Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater

Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied energy materials 2024-07, Vol.7 (13), p.5479-5489
Hauptverfasser: Bushiri, Daniela A., Baxter, Amanda F., Odunjo, Onaolapo, Fraga Alvarez, Daniela V., Yuan, Yong, Chen, Jingguang G., Esposito, Daniel V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5489
container_issue 13
container_start_page 5479
container_title ACS applied energy materials
container_volume 7
creator Bushiri, Daniela A.
Baxter, Amanda F.
Odunjo, Onaolapo
Fraga Alvarez, Daniela V.
Yuan, Yong
Chen, Jingguang G.
Esposito, Daniel V.
description Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)­analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν­(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.
doi_str_mv 10.1021/acsaem.4c00839
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2396602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c338731830</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-954f66e0023fd851e0939ade5c44d900bba620a8bfabf59400afe051a04331b03</originalsourceid><addsrcrecordid>eNp1kM1PwzAMxSMEEtPYlXPFEanD6RfNEU2DIU1MAnau3NRhmbp0StLB_nsC3YELJ1t-fj_Zj7FrDlMOCb9D6ZB200wClKk4Y6Mkv89iEEVy_qe_ZBPntgDABS8SIUZst_rSDcVzI3Hv-hY9NdFr7zdkdL-LfsVohh7bo_MuUp2N3qgl6fWBgnr8IBPND13be92ZSJtobepeKbIBs1_EL9R7i23w4GdA2yt2obB1NDnVMVs_zt9ni3i5enqePSxj5GXhY5FnqigIIElVU-acQKQCG8plljUCoK6xSADLWmGtcpEBoCLIOUKWpryGdMxuBm7nvK6c1J7kRnbGhMurJBVFEdBjNh2WpO2cs6SqvdU7tMeKQ_UTajWEWp1CDYbbwRDm1bbrrQk__Lf8DVfweo0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</title><source>ACS Publications</source><creator>Bushiri, Daniela A. ; Baxter, Amanda F. ; Odunjo, Onaolapo ; Fraga Alvarez, Daniela V. ; Yuan, Yong ; Chen, Jingguang G. ; Esposito, Daniel V.</creator><creatorcontrib>Bushiri, Daniela A. ; Baxter, Amanda F. ; Odunjo, Onaolapo ; Fraga Alvarez, Daniela V. ; Yuan, Yong ; Chen, Jingguang G. ; Esposito, Daniel V. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)­analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν­(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c00839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chlorine evolution reaction ; GEOSCIENCES ; hydrogen economy ; oxide-coated electrocatalysts ; oxygen evolution reaction ; seawater electrolysis</subject><ispartof>ACS applied energy materials, 2024-07, Vol.7 (13), p.5479-5489</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a186t-954f66e0023fd851e0939ade5c44d900bba620a8bfabf59400afe051a04331b03</cites><orcidid>0000-0003-0710-0277 ; 0000-0002-5155-4113 ; 0000-0002-0550-801X ; 0000-0001-5127-427X ; 0000000307100277 ; 000000015127427X ; 0000000251554113 ; 000000020550801X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c00839$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c00839$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2396602$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bushiri, Daniela A.</creatorcontrib><creatorcontrib>Baxter, Amanda F.</creatorcontrib><creatorcontrib>Odunjo, Onaolapo</creatorcontrib><creatorcontrib>Fraga Alvarez, Daniela V.</creatorcontrib><creatorcontrib>Yuan, Yong</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><creatorcontrib>Esposito, Daniel V.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)­analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν­(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.</description><subject>chlorine evolution reaction</subject><subject>GEOSCIENCES</subject><subject>hydrogen economy</subject><subject>oxide-coated electrocatalysts</subject><subject>oxygen evolution reaction</subject><subject>seawater electrolysis</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwzAMxSMEEtPYlXPFEanD6RfNEU2DIU1MAnau3NRhmbp0StLB_nsC3YELJ1t-fj_Zj7FrDlMOCb9D6ZB200wClKk4Y6Mkv89iEEVy_qe_ZBPntgDABS8SIUZst_rSDcVzI3Hv-hY9NdFr7zdkdL-LfsVohh7bo_MuUp2N3qgl6fWBgnr8IBPND13be92ZSJtobepeKbIBs1_EL9R7i23w4GdA2yt2obB1NDnVMVs_zt9ni3i5enqePSxj5GXhY5FnqigIIElVU-acQKQCG8plljUCoK6xSADLWmGtcpEBoCLIOUKWpryGdMxuBm7nvK6c1J7kRnbGhMurJBVFEdBjNh2WpO2cs6SqvdU7tMeKQ_UTajWEWp1CDYbbwRDm1bbrrQk__Lf8DVfweo0</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Bushiri, Daniela A.</creator><creator>Baxter, Amanda F.</creator><creator>Odunjo, Onaolapo</creator><creator>Fraga Alvarez, Daniela V.</creator><creator>Yuan, Yong</creator><creator>Chen, Jingguang G.</creator><creator>Esposito, Daniel V.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0710-0277</orcidid><orcidid>https://orcid.org/0000-0002-5155-4113</orcidid><orcidid>https://orcid.org/0000-0002-0550-801X</orcidid><orcidid>https://orcid.org/0000-0001-5127-427X</orcidid><orcidid>https://orcid.org/0000000307100277</orcidid><orcidid>https://orcid.org/000000015127427X</orcidid><orcidid>https://orcid.org/0000000251554113</orcidid><orcidid>https://orcid.org/000000020550801X</orcidid></search><sort><creationdate>20240708</creationdate><title>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</title><author>Bushiri, Daniela A. ; Baxter, Amanda F. ; Odunjo, Onaolapo ; Fraga Alvarez, Daniela V. ; Yuan, Yong ; Chen, Jingguang G. ; Esposito, Daniel V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-954f66e0023fd851e0939ade5c44d900bba620a8bfabf59400afe051a04331b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chlorine evolution reaction</topic><topic>GEOSCIENCES</topic><topic>hydrogen economy</topic><topic>oxide-coated electrocatalysts</topic><topic>oxygen evolution reaction</topic><topic>seawater electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bushiri, Daniela A.</creatorcontrib><creatorcontrib>Baxter, Amanda F.</creatorcontrib><creatorcontrib>Odunjo, Onaolapo</creatorcontrib><creatorcontrib>Fraga Alvarez, Daniela V.</creatorcontrib><creatorcontrib>Yuan, Yong</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><creatorcontrib>Esposito, Daniel V.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bushiri, Daniela A.</au><au>Baxter, Amanda F.</au><au>Odunjo, Onaolapo</au><au>Fraga Alvarez, Daniela V.</au><au>Yuan, Yong</au><au>Chen, Jingguang G.</au><au>Esposito, Daniel V.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-07-08</date><risdate>2024</risdate><volume>7</volume><issue>13</issue><spage>5479</spage><epage>5489</epage><pages>5479-5489</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)­analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν­(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c00839</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0710-0277</orcidid><orcidid>https://orcid.org/0000-0002-5155-4113</orcidid><orcidid>https://orcid.org/0000-0002-0550-801X</orcidid><orcidid>https://orcid.org/0000-0001-5127-427X</orcidid><orcidid>https://orcid.org/0000000307100277</orcidid><orcidid>https://orcid.org/000000015127427X</orcidid><orcidid>https://orcid.org/0000000251554113</orcidid><orcidid>https://orcid.org/000000020550801X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2574-0962
ispartof ACS applied energy materials, 2024-07, Vol.7 (13), p.5479-5489
issn 2574-0962
2574-0962
language eng
recordid cdi_osti_scitechconnect_2396602
source ACS Publications
subjects chlorine evolution reaction
GEOSCIENCES
hydrogen economy
oxide-coated electrocatalysts
oxygen evolution reaction
seawater electrolysis
title Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide-Encapsulated%20Ruthenium%20Oxide%20Catalysts%20for%20Selective%20Oxygen%20Evolution%20in%20Unbuffered%20pH-Neutral%20Seawater&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Bushiri,%20Daniela%20A.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2024-07-08&rft.volume=7&rft.issue=13&rft.spage=5479&rft.epage=5489&rft.pages=5479-5489&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c00839&rft_dat=%3Cacs_osti_%3Ec338731830%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true