Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater
Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electro...
Gespeichert in:
Veröffentlicht in: | ACS applied energy materials 2024-07, Vol.7 (13), p.5479-5489 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5489 |
---|---|
container_issue | 13 |
container_start_page | 5479 |
container_title | ACS applied energy materials |
container_volume | 7 |
creator | Bushiri, Daniela A. Baxter, Amanda F. Odunjo, Onaolapo Fraga Alvarez, Daniela V. Yuan, Yong Chen, Jingguang G. Esposito, Daniel V. |
description | Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater. |
doi_str_mv | 10.1021/acsaem.4c00839 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2396602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c338731830</sourcerecordid><originalsourceid>FETCH-LOGICAL-a186t-954f66e0023fd851e0939ade5c44d900bba620a8bfabf59400afe051a04331b03</originalsourceid><addsrcrecordid>eNp1kM1PwzAMxSMEEtPYlXPFEanD6RfNEU2DIU1MAnau3NRhmbp0StLB_nsC3YELJ1t-fj_Zj7FrDlMOCb9D6ZB200wClKk4Y6Mkv89iEEVy_qe_ZBPntgDABS8SIUZst_rSDcVzI3Hv-hY9NdFr7zdkdL-LfsVohh7bo_MuUp2N3qgl6fWBgnr8IBPND13be92ZSJtobepeKbIBs1_EL9R7i23w4GdA2yt2obB1NDnVMVs_zt9ni3i5enqePSxj5GXhY5FnqigIIElVU-acQKQCG8plljUCoK6xSADLWmGtcpEBoCLIOUKWpryGdMxuBm7nvK6c1J7kRnbGhMurJBVFEdBjNh2WpO2cs6SqvdU7tMeKQ_UTajWEWp1CDYbbwRDm1bbrrQk__Lf8DVfweo0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</title><source>ACS Publications</source><creator>Bushiri, Daniela A. ; Baxter, Amanda F. ; Odunjo, Onaolapo ; Fraga Alvarez, Daniela V. ; Yuan, Yong ; Chen, Jingguang G. ; Esposito, Daniel V.</creator><creatorcontrib>Bushiri, Daniela A. ; Baxter, Amanda F. ; Odunjo, Onaolapo ; Fraga Alvarez, Daniela V. ; Yuan, Yong ; Chen, Jingguang G. ; Esposito, Daniel V. ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.</description><identifier>ISSN: 2574-0962</identifier><identifier>EISSN: 2574-0962</identifier><identifier>DOI: 10.1021/acsaem.4c00839</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>chlorine evolution reaction ; GEOSCIENCES ; hydrogen economy ; oxide-coated electrocatalysts ; oxygen evolution reaction ; seawater electrolysis</subject><ispartof>ACS applied energy materials, 2024-07, Vol.7 (13), p.5479-5489</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a186t-954f66e0023fd851e0939ade5c44d900bba620a8bfabf59400afe051a04331b03</cites><orcidid>0000-0003-0710-0277 ; 0000-0002-5155-4113 ; 0000-0002-0550-801X ; 0000-0001-5127-427X ; 0000000307100277 ; 000000015127427X ; 0000000251554113 ; 000000020550801X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsaem.4c00839$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsaem.4c00839$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2396602$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bushiri, Daniela A.</creatorcontrib><creatorcontrib>Baxter, Amanda F.</creatorcontrib><creatorcontrib>Odunjo, Onaolapo</creatorcontrib><creatorcontrib>Fraga Alvarez, Daniela V.</creatorcontrib><creatorcontrib>Yuan, Yong</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><creatorcontrib>Esposito, Daniel V.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</title><title>ACS applied energy materials</title><addtitle>ACS Appl. Energy Mater</addtitle><description>Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.</description><subject>chlorine evolution reaction</subject><subject>GEOSCIENCES</subject><subject>hydrogen economy</subject><subject>oxide-coated electrocatalysts</subject><subject>oxygen evolution reaction</subject><subject>seawater electrolysis</subject><issn>2574-0962</issn><issn>2574-0962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwzAMxSMEEtPYlXPFEanD6RfNEU2DIU1MAnau3NRhmbp0StLB_nsC3YELJ1t-fj_Zj7FrDlMOCb9D6ZB200wClKk4Y6Mkv89iEEVy_qe_ZBPntgDABS8SIUZst_rSDcVzI3Hv-hY9NdFr7zdkdL-LfsVohh7bo_MuUp2N3qgl6fWBgnr8IBPND13be92ZSJtobepeKbIBs1_EL9R7i23w4GdA2yt2obB1NDnVMVs_zt9ni3i5enqePSxj5GXhY5FnqigIIElVU-acQKQCG8plljUCoK6xSADLWmGtcpEBoCLIOUKWpryGdMxuBm7nvK6c1J7kRnbGhMurJBVFEdBjNh2WpO2cs6SqvdU7tMeKQ_UTajWEWp1CDYbbwRDm1bbrrQk__Lf8DVfweo0</recordid><startdate>20240708</startdate><enddate>20240708</enddate><creator>Bushiri, Daniela A.</creator><creator>Baxter, Amanda F.</creator><creator>Odunjo, Onaolapo</creator><creator>Fraga Alvarez, Daniela V.</creator><creator>Yuan, Yong</creator><creator>Chen, Jingguang G.</creator><creator>Esposito, Daniel V.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0710-0277</orcidid><orcidid>https://orcid.org/0000-0002-5155-4113</orcidid><orcidid>https://orcid.org/0000-0002-0550-801X</orcidid><orcidid>https://orcid.org/0000-0001-5127-427X</orcidid><orcidid>https://orcid.org/0000000307100277</orcidid><orcidid>https://orcid.org/000000015127427X</orcidid><orcidid>https://orcid.org/0000000251554113</orcidid><orcidid>https://orcid.org/000000020550801X</orcidid></search><sort><creationdate>20240708</creationdate><title>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</title><author>Bushiri, Daniela A. ; Baxter, Amanda F. ; Odunjo, Onaolapo ; Fraga Alvarez, Daniela V. ; Yuan, Yong ; Chen, Jingguang G. ; Esposito, Daniel V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a186t-954f66e0023fd851e0939ade5c44d900bba620a8bfabf59400afe051a04331b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>chlorine evolution reaction</topic><topic>GEOSCIENCES</topic><topic>hydrogen economy</topic><topic>oxide-coated electrocatalysts</topic><topic>oxygen evolution reaction</topic><topic>seawater electrolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bushiri, Daniela A.</creatorcontrib><creatorcontrib>Baxter, Amanda F.</creatorcontrib><creatorcontrib>Odunjo, Onaolapo</creatorcontrib><creatorcontrib>Fraga Alvarez, Daniela V.</creatorcontrib><creatorcontrib>Yuan, Yong</creatorcontrib><creatorcontrib>Chen, Jingguang G.</creatorcontrib><creatorcontrib>Esposito, Daniel V.</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS applied energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bushiri, Daniela A.</au><au>Baxter, Amanda F.</au><au>Odunjo, Onaolapo</au><au>Fraga Alvarez, Daniela V.</au><au>Yuan, Yong</au><au>Chen, Jingguang G.</au><au>Esposito, Daniel V.</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater</atitle><jtitle>ACS applied energy materials</jtitle><addtitle>ACS Appl. Energy Mater</addtitle><date>2024-07-08</date><risdate>2024</risdate><volume>7</volume><issue>13</issue><spage>5479</spage><epage>5489</epage><pages>5479-5489</pages><issn>2574-0962</issn><eissn>2574-0962</eissn><abstract>Direct seawater electrolysis is a promising approach to producing green hydrogen in water-scarce environments using renewable energy. However, the undesirable chlorine evolution reaction and hypochlorite evolution reaction compete with the desired oxygen evolution reaction (OER) at the anode electrocatalyst. This issue is most pronounced in unbuffered pH-neutral solutions due to local acidification resulting from the OER. To overcome this challenge, this study provides a comprehensive evaluation of the use of silicon oxide (SiO x ) and titanium oxide (TiO x ) nanoscale overlayers coated on metallic ruthenium (Ru) and ruthenium oxide (RuO x ) thin film electrodes and their ability to block chloride ions from reaching active sites during operation in an unbuffered 0.6 M NaCl electrolyte. Using a combination of (electro)analytical techniques, encapsulated RuO x anodes are shown to effectively suppress Cl– transport to buried catalyst active sites while allowing for the desired OER to occur, leading to increases in OER faradaic efficiency at moderate overpotentials. Evidence for the ability of SiO x overlayers to block Cl– ions from reaching the active buried interface was obtained by monitoring the ν(O–H) stretching mode of OH adsorbates using in situ Raman spectroscopy. This study also reports trade-offs between the activity, selectivity, and stability of bare and encapsulated Ru and RuO x electrocatalysts, finding that the magnitude of these trade-offs strongly depends on the complex interplay between electrode architecture, material properties, and catalytic performance, especially in unbuffered pH-neutral seawater.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsaem.4c00839</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0710-0277</orcidid><orcidid>https://orcid.org/0000-0002-5155-4113</orcidid><orcidid>https://orcid.org/0000-0002-0550-801X</orcidid><orcidid>https://orcid.org/0000-0001-5127-427X</orcidid><orcidid>https://orcid.org/0000000307100277</orcidid><orcidid>https://orcid.org/000000015127427X</orcidid><orcidid>https://orcid.org/0000000251554113</orcidid><orcidid>https://orcid.org/000000020550801X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2574-0962 |
ispartof | ACS applied energy materials, 2024-07, Vol.7 (13), p.5479-5489 |
issn | 2574-0962 2574-0962 |
language | eng |
recordid | cdi_osti_scitechconnect_2396602 |
source | ACS Publications |
subjects | chlorine evolution reaction GEOSCIENCES hydrogen economy oxide-coated electrocatalysts oxygen evolution reaction seawater electrolysis |
title | Oxide-Encapsulated Ruthenium Oxide Catalysts for Selective Oxygen Evolution in Unbuffered pH-Neutral Seawater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A36%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxide-Encapsulated%20Ruthenium%20Oxide%20Catalysts%20for%20Selective%20Oxygen%20Evolution%20in%20Unbuffered%20pH-Neutral%20Seawater&rft.jtitle=ACS%20applied%20energy%20materials&rft.au=Bushiri,%20Daniela%20A.&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2024-07-08&rft.volume=7&rft.issue=13&rft.spage=5479&rft.epage=5489&rft.pages=5479-5489&rft.issn=2574-0962&rft.eissn=2574-0962&rft_id=info:doi/10.1021/acsaem.4c00839&rft_dat=%3Cacs_osti_%3Ec338731830%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |