Real-time risk analysis with optimization proxies

The increasing penetration of renewable generation and distributed energy resources requires new operating practices for power systems, wherein risk is explicitly quantified and managed. However, traditional risk-assessment frameworks are not fast enough for real-time operations, because they requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electric power systems research 2024-10, Vol.235 (C), p.110822, Article 110822
Hauptverfasser: Chen, Wenbo, Tanneau, Mathieu, Van Hentenryck, Pascal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 110822
container_title Electric power systems research
container_volume 235
creator Chen, Wenbo
Tanneau, Mathieu
Van Hentenryck, Pascal
description The increasing penetration of renewable generation and distributed energy resources requires new operating practices for power systems, wherein risk is explicitly quantified and managed. However, traditional risk-assessment frameworks are not fast enough for real-time operations, because they require numerous simulations, each of which requires solving multiple economic dispatch problems sequentially. The paper addresses this computational challenge by proposing proxy-based risk assessment, wherein optimization proxies are trained to learn the input-to-output mapping of an economic dispatch optimization solver. Once trained, the proxies make predictions in milliseconds, thereby enabling real-time risk assessment. The paper leverages self-supervised learning and end-to-end-feasible architecture to achieve high-quality sequential predictions. Numerical experiments on large systems demonstrate the scalability and accuracy of the proposed approach. •Rising renewables and distributed resources need new power system risk assessments.•A new risk assessment framework utilizing fast optimization proxies is proposed.•The framework uses an end-to-end feasible proxy for scalable and accurate training.•Proposed risk assessment is highly accurate and 30x faster than optimization methods.
doi_str_mv 10.1016/j.epsr.2024.110822
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2391059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378779624007089</els_id><sourcerecordid>S0378779624007089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-de196fb034a60c3ce783ea797365f39a1518d98c3ba8b40b221755b92942b80b3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVfFfetL0nyBGxl0FAYE0XVI01cm40xbkqKOv96Wunb1Fveey-MQck2hoEDl7a7APsWCASsLSkEzdkIWVCueMyjlKVkAVzpXyshzcpHSDgCkUWJB6Cu6fT6EA2YxpI_MtW5_TCFlX2HYZl0_JuHHDaFrsz523wHTJTlr3D7h1d9dkvfHh7fVU755WT-v7je5Z4INeY3UyKYCXjoJnntUmqNTRnEpGm4cFVTXRnteOV2VUDFGlRCVYaZklYaKL8nNvNulIdjkw4B-67u2RT9Yxg0FYcYSm0s-dilFbGwfw8HFo6VgJzN2ZyczdjJjZzMjdDdDOL7_GTBO69h6rEOcxusu_If_Aqpea24</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-time risk analysis with optimization proxies</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chen, Wenbo ; Tanneau, Mathieu ; Van Hentenryck, Pascal</creator><creatorcontrib>Chen, Wenbo ; Tanneau, Mathieu ; Van Hentenryck, Pascal</creatorcontrib><description>The increasing penetration of renewable generation and distributed energy resources requires new operating practices for power systems, wherein risk is explicitly quantified and managed. However, traditional risk-assessment frameworks are not fast enough for real-time operations, because they require numerous simulations, each of which requires solving multiple economic dispatch problems sequentially. The paper addresses this computational challenge by proposing proxy-based risk assessment, wherein optimization proxies are trained to learn the input-to-output mapping of an economic dispatch optimization solver. Once trained, the proxies make predictions in milliseconds, thereby enabling real-time risk assessment. The paper leverages self-supervised learning and end-to-end-feasible architecture to achieve high-quality sequential predictions. Numerical experiments on large systems demonstrate the scalability and accuracy of the proposed approach. •Rising renewables and distributed resources need new power system risk assessments.•A new risk assessment framework utilizing fast optimization proxies is proposed.•The framework uses an end-to-end feasible proxy for scalable and accurate training.•Proposed risk assessment is highly accurate and 30x faster than optimization methods.</description><identifier>ISSN: 0378-7796</identifier><identifier>EISSN: 1873-2046</identifier><identifier>DOI: 10.1016/j.epsr.2024.110822</identifier><language>eng</language><publisher>Switzerland: Elsevier B.V</publisher><subject>Optimization proxies ; Risk assessment</subject><ispartof>Electric power systems research, 2024-10, Vol.235 (C), p.110822, Article 110822</ispartof><rights>2024 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-de196fb034a60c3ce783ea797365f39a1518d98c3ba8b40b221755b92942b80b3</cites><orcidid>0000-0002-9967-0578 ; 0000-0002-5712-6101 ; 0000000257126101 ; 0000000299670578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.epsr.2024.110822$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2391059$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Wenbo</creatorcontrib><creatorcontrib>Tanneau, Mathieu</creatorcontrib><creatorcontrib>Van Hentenryck, Pascal</creatorcontrib><title>Real-time risk analysis with optimization proxies</title><title>Electric power systems research</title><description>The increasing penetration of renewable generation and distributed energy resources requires new operating practices for power systems, wherein risk is explicitly quantified and managed. However, traditional risk-assessment frameworks are not fast enough for real-time operations, because they require numerous simulations, each of which requires solving multiple economic dispatch problems sequentially. The paper addresses this computational challenge by proposing proxy-based risk assessment, wherein optimization proxies are trained to learn the input-to-output mapping of an economic dispatch optimization solver. Once trained, the proxies make predictions in milliseconds, thereby enabling real-time risk assessment. The paper leverages self-supervised learning and end-to-end-feasible architecture to achieve high-quality sequential predictions. Numerical experiments on large systems demonstrate the scalability and accuracy of the proposed approach. •Rising renewables and distributed resources need new power system risk assessments.•A new risk assessment framework utilizing fast optimization proxies is proposed.•The framework uses an end-to-end feasible proxy for scalable and accurate training.•Proposed risk assessment is highly accurate and 30x faster than optimization methods.</description><subject>Optimization proxies</subject><subject>Risk assessment</subject><issn>0378-7796</issn><issn>1873-2046</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVfFfetL0nyBGxl0FAYE0XVI01cm40xbkqKOv96Wunb1Fveey-MQck2hoEDl7a7APsWCASsLSkEzdkIWVCueMyjlKVkAVzpXyshzcpHSDgCkUWJB6Cu6fT6EA2YxpI_MtW5_TCFlX2HYZl0_JuHHDaFrsz523wHTJTlr3D7h1d9dkvfHh7fVU755WT-v7je5Z4INeY3UyKYCXjoJnntUmqNTRnEpGm4cFVTXRnteOV2VUDFGlRCVYaZklYaKL8nNvNulIdjkw4B-67u2RT9Yxg0FYcYSm0s-dilFbGwfw8HFo6VgJzN2ZyczdjJjZzMjdDdDOL7_GTBO69h6rEOcxusu_If_Aqpea24</recordid><startdate>202410</startdate><enddate>202410</enddate><creator>Chen, Wenbo</creator><creator>Tanneau, Mathieu</creator><creator>Van Hentenryck, Pascal</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9967-0578</orcidid><orcidid>https://orcid.org/0000-0002-5712-6101</orcidid><orcidid>https://orcid.org/0000000257126101</orcidid><orcidid>https://orcid.org/0000000299670578</orcidid></search><sort><creationdate>202410</creationdate><title>Real-time risk analysis with optimization proxies</title><author>Chen, Wenbo ; Tanneau, Mathieu ; Van Hentenryck, Pascal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-de196fb034a60c3ce783ea797365f39a1518d98c3ba8b40b221755b92942b80b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Optimization proxies</topic><topic>Risk assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wenbo</creatorcontrib><creatorcontrib>Tanneau, Mathieu</creatorcontrib><creatorcontrib>Van Hentenryck, Pascal</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Electric power systems research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wenbo</au><au>Tanneau, Mathieu</au><au>Van Hentenryck, Pascal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time risk analysis with optimization proxies</atitle><jtitle>Electric power systems research</jtitle><date>2024-10</date><risdate>2024</risdate><volume>235</volume><issue>C</issue><spage>110822</spage><pages>110822-</pages><artnum>110822</artnum><issn>0378-7796</issn><eissn>1873-2046</eissn><abstract>The increasing penetration of renewable generation and distributed energy resources requires new operating practices for power systems, wherein risk is explicitly quantified and managed. However, traditional risk-assessment frameworks are not fast enough for real-time operations, because they require numerous simulations, each of which requires solving multiple economic dispatch problems sequentially. The paper addresses this computational challenge by proposing proxy-based risk assessment, wherein optimization proxies are trained to learn the input-to-output mapping of an economic dispatch optimization solver. Once trained, the proxies make predictions in milliseconds, thereby enabling real-time risk assessment. The paper leverages self-supervised learning and end-to-end-feasible architecture to achieve high-quality sequential predictions. Numerical experiments on large systems demonstrate the scalability and accuracy of the proposed approach. •Rising renewables and distributed resources need new power system risk assessments.•A new risk assessment framework utilizing fast optimization proxies is proposed.•The framework uses an end-to-end feasible proxy for scalable and accurate training.•Proposed risk assessment is highly accurate and 30x faster than optimization methods.</abstract><cop>Switzerland</cop><pub>Elsevier B.V</pub><doi>10.1016/j.epsr.2024.110822</doi><orcidid>https://orcid.org/0000-0002-9967-0578</orcidid><orcidid>https://orcid.org/0000-0002-5712-6101</orcidid><orcidid>https://orcid.org/0000000257126101</orcidid><orcidid>https://orcid.org/0000000299670578</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7796
ispartof Electric power systems research, 2024-10, Vol.235 (C), p.110822, Article 110822
issn 0378-7796
1873-2046
language eng
recordid cdi_osti_scitechconnect_2391059
source Access via ScienceDirect (Elsevier)
subjects Optimization proxies
Risk assessment
title Real-time risk analysis with optimization proxies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T22%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20risk%20analysis%20with%20optimization%20proxies&rft.jtitle=Electric%20power%20systems%20research&rft.au=Chen,%20Wenbo&rft.date=2024-10&rft.volume=235&rft.issue=C&rft.spage=110822&rft.pages=110822-&rft.artnum=110822&rft.issn=0378-7796&rft.eissn=1873-2046&rft_id=info:doi/10.1016/j.epsr.2024.110822&rft_dat=%3Celsevier_osti_%3ES0378779624007089%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378779624007089&rfr_iscdi=true