Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates

The cost-effective production of sustainable aviation fuels (SAF) remains a major challenge within the energy sector. One approach to address this is the fermentation of biomass feedstocks into oxygenates followed by catalytic conversion to alkenes or other oligomerization precursors. 2,3-Butanediol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-06, Vol.12 (23), p.8702-8716
Hauptverfasser: Cordon, Michael J., Li, Meijun, Yang, Xiaokun, Neate, Peter G. N., Unocic, Kinga A., Li, Zhenglong, Moore, Cameron M., Sutton, Andrew D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8716
container_issue 23
container_start_page 8702
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Cordon, Michael J.
Li, Meijun
Yang, Xiaokun
Neate, Peter G. N.
Unocic, Kinga A.
Li, Zhenglong
Moore, Cameron M.
Sutton, Andrew D.
description The cost-effective production of sustainable aviation fuels (SAF) remains a major challenge within the energy sector. One approach to address this is the fermentation of biomass feedstocks into oxygenates followed by catalytic conversion to alkenes or other oligomerization precursors. 2,3-Butanediol (BDO) is a promising fermentation product due to its four-carbon nature, its decreased microorganism toxicity and associated higher maximum fermentation titers relative to other alcohols and oxygenates, and its capacity to be readily converted into butene isomers and longer chain alkenes. BDO conversion is currently constrained by separation challenges for BDO isolation due to its high boiling point and hydrophilicity. This work expands upon previous BDO reactive separation via dioxolane formation over a solid acid catalyst by investigating the conversion of dioxolanes into alkene mixtures. Dioxolanes were formed from a range of aldehydes and subsequently converted over a Cu/ZSM-5 catalyst (448–523 K) via an ether cleavage, hydrogenation, and dehydration reaction network to form alkene-rich product mixtures (96% C3+ alkene yield, 523 K). This selectivity is greater than that of direct BDO conversion to alkenes over an identical catalyst (89%, 523 K). C3+ alkene selectivity is maximized between 498 and 523 K at complete dioxolane conversion without significant alkene hydrogenation to alkanes. The alkene product distributions can be tailored via both aldehyde selection during dioxolane formation and the dioxolane conversion reaction temperature. Alkene mixtures from dioxolane conversion predominantly reflect the carbon chain length and stereochemistry of BDO and the initial aldehyde at or below 498 K, yet higher reaction temperatures yield alkene mixtures of similar carbon chain distributions, regardless of initial aldehyde selection. Deactivation of the Cu/ZSM-5 catalyst is observed for multiple steps of the overall reaction network but can be minimized by facilitating the complete dioxolane-to-alkene reaction network at temperatures of at least 498 K.
doi_str_mv 10.1021/acssuschemeng.4c01155
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2376374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153596159</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-4ba1f2b3ce5ba7040c9e2151fcf49c08ad7e5af76e74c707d62d1bc32d9009b63</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhisEEtPYT0CqOHGgIx9NP45jMJg0CYTgHKWpu2a0yUhSCf49mboDnPDFlv28lv1G0SVGc4wIvhXSucHJFnrQ23kqEcaMnUQTgrMiQWnBTn_V59HMuR0KUZaUFHgSvdwNHjQkr0q28aL7CHW8MrYXXhkdN9b0MbmhSaCEhlqZLvatNcO2je-V-TJd6MZr7cH2YSo8uIvorBGdg9kxT6P31cPb8inZPD-ul4tNIiiiPkkrgRtSUQmsEjlKkSyBYIYb2aSlRIWoc2CiyTPIU5mjvM5IjStJSV2G46uMTqOrca9xXnEnlQfZSqM1SM8JzTOapwG6HqG9NZ8DOM975SR0h7PN4DjFjLIyw6wMKBtRaY1zFhq-t6oX9ptjxA9O8z9O86PTQYdHXRjznRmsDl__o_kB0yWGUA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153596159</pqid></control><display><type>article</type><title>Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates</title><source>ACS Publications</source><creator>Cordon, Michael J. ; Li, Meijun ; Yang, Xiaokun ; Neate, Peter G. N. ; Unocic, Kinga A. ; Li, Zhenglong ; Moore, Cameron M. ; Sutton, Andrew D.</creator><creatorcontrib>Cordon, Michael J. ; Li, Meijun ; Yang, Xiaokun ; Neate, Peter G. N. ; Unocic, Kinga A. ; Li, Zhenglong ; Moore, Cameron M. ; Sutton, Andrew D. ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States) ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The cost-effective production of sustainable aviation fuels (SAF) remains a major challenge within the energy sector. One approach to address this is the fermentation of biomass feedstocks into oxygenates followed by catalytic conversion to alkenes or other oligomerization precursors. 2,3-Butanediol (BDO) is a promising fermentation product due to its four-carbon nature, its decreased microorganism toxicity and associated higher maximum fermentation titers relative to other alcohols and oxygenates, and its capacity to be readily converted into butene isomers and longer chain alkenes. BDO conversion is currently constrained by separation challenges for BDO isolation due to its high boiling point and hydrophilicity. This work expands upon previous BDO reactive separation via dioxolane formation over a solid acid catalyst by investigating the conversion of dioxolanes into alkene mixtures. Dioxolanes were formed from a range of aldehydes and subsequently converted over a Cu/ZSM-5 catalyst (448–523 K) via an ether cleavage, hydrogenation, and dehydration reaction network to form alkene-rich product mixtures (96% C3+ alkene yield, 523 K). This selectivity is greater than that of direct BDO conversion to alkenes over an identical catalyst (89%, 523 K). C3+ alkene selectivity is maximized between 498 and 523 K at complete dioxolane conversion without significant alkene hydrogenation to alkanes. The alkene product distributions can be tailored via both aldehyde selection during dioxolane formation and the dioxolane conversion reaction temperature. Alkene mixtures from dioxolane conversion predominantly reflect the carbon chain length and stereochemistry of BDO and the initial aldehyde at or below 498 K, yet higher reaction temperatures yield alkene mixtures of similar carbon chain distributions, regardless of initial aldehyde selection. Deactivation of the Cu/ZSM-5 catalyst is observed for multiple steps of the overall reaction network but can be minimized by facilitating the complete dioxolane-to-alkene reaction network at temperatures of at least 498 K.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c01155</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>2,3-butanediol ; aldehydes ; alkenes ; aviation ; biomass ; carbon ; catalysts ; cost effectiveness ; deactivation ; dioxolane ; energy industry ; feedstocks ; fermentation ; fermented foods ; green chemistry ; hydrogenation ; hydrophilicity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; oligomerization ; stereochemistry ; sustainable aviation fuel ; temperature ; toxicity ; zeolites ; ZSM-5</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-06, Vol.12 (23), p.8702-8716</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a303t-4ba1f2b3ce5ba7040c9e2151fcf49c08ad7e5af76e74c707d62d1bc32d9009b63</cites><orcidid>0000-0002-5675-8027 ; 0000-0001-8811-8625 ; 0000-0001-7984-1715 ; 0000-0001-7941-6591 ; 0000000188118625 ; 0000000221648629 ; 0000000256758027 ; 0000000179841715 ; 0000000279114064 ; 0000000181539574 ; 0000000179416591</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c01155$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c01155$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2376374$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cordon, Michael J.</creatorcontrib><creatorcontrib>Li, Meijun</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Neate, Peter G. N.</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Li, Zhenglong</creatorcontrib><creatorcontrib>Moore, Cameron M.</creatorcontrib><creatorcontrib>Sutton, Andrew D.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>The cost-effective production of sustainable aviation fuels (SAF) remains a major challenge within the energy sector. One approach to address this is the fermentation of biomass feedstocks into oxygenates followed by catalytic conversion to alkenes or other oligomerization precursors. 2,3-Butanediol (BDO) is a promising fermentation product due to its four-carbon nature, its decreased microorganism toxicity and associated higher maximum fermentation titers relative to other alcohols and oxygenates, and its capacity to be readily converted into butene isomers and longer chain alkenes. BDO conversion is currently constrained by separation challenges for BDO isolation due to its high boiling point and hydrophilicity. This work expands upon previous BDO reactive separation via dioxolane formation over a solid acid catalyst by investigating the conversion of dioxolanes into alkene mixtures. Dioxolanes were formed from a range of aldehydes and subsequently converted over a Cu/ZSM-5 catalyst (448–523 K) via an ether cleavage, hydrogenation, and dehydration reaction network to form alkene-rich product mixtures (96% C3+ alkene yield, 523 K). This selectivity is greater than that of direct BDO conversion to alkenes over an identical catalyst (89%, 523 K). C3+ alkene selectivity is maximized between 498 and 523 K at complete dioxolane conversion without significant alkene hydrogenation to alkanes. The alkene product distributions can be tailored via both aldehyde selection during dioxolane formation and the dioxolane conversion reaction temperature. Alkene mixtures from dioxolane conversion predominantly reflect the carbon chain length and stereochemistry of BDO and the initial aldehyde at or below 498 K, yet higher reaction temperatures yield alkene mixtures of similar carbon chain distributions, regardless of initial aldehyde selection. Deactivation of the Cu/ZSM-5 catalyst is observed for multiple steps of the overall reaction network but can be minimized by facilitating the complete dioxolane-to-alkene reaction network at temperatures of at least 498 K.</description><subject>2,3-butanediol</subject><subject>aldehydes</subject><subject>alkenes</subject><subject>aviation</subject><subject>biomass</subject><subject>carbon</subject><subject>catalysts</subject><subject>cost effectiveness</subject><subject>deactivation</subject><subject>dioxolane</subject><subject>energy industry</subject><subject>feedstocks</subject><subject>fermentation</subject><subject>fermented foods</subject><subject>green chemistry</subject><subject>hydrogenation</subject><subject>hydrophilicity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>oligomerization</subject><subject>stereochemistry</subject><subject>sustainable aviation fuel</subject><subject>temperature</subject><subject>toxicity</subject><subject>zeolites</subject><subject>ZSM-5</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhisEEtPYT0CqOHGgIx9NP45jMJg0CYTgHKWpu2a0yUhSCf49mboDnPDFlv28lv1G0SVGc4wIvhXSucHJFnrQ23kqEcaMnUQTgrMiQWnBTn_V59HMuR0KUZaUFHgSvdwNHjQkr0q28aL7CHW8MrYXXhkdN9b0MbmhSaCEhlqZLvatNcO2je-V-TJd6MZr7cH2YSo8uIvorBGdg9kxT6P31cPb8inZPD-ul4tNIiiiPkkrgRtSUQmsEjlKkSyBYIYb2aSlRIWoc2CiyTPIU5mjvM5IjStJSV2G46uMTqOrca9xXnEnlQfZSqM1SM8JzTOapwG6HqG9NZ8DOM975SR0h7PN4DjFjLIyw6wMKBtRaY1zFhq-t6oX9ptjxA9O8z9O86PTQYdHXRjznRmsDl__o_kB0yWGUA</recordid><startdate>20240610</startdate><enddate>20240610</enddate><creator>Cordon, Michael J.</creator><creator>Li, Meijun</creator><creator>Yang, Xiaokun</creator><creator>Neate, Peter G. N.</creator><creator>Unocic, Kinga A.</creator><creator>Li, Zhenglong</creator><creator>Moore, Cameron M.</creator><creator>Sutton, Andrew D.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5675-8027</orcidid><orcidid>https://orcid.org/0000-0001-8811-8625</orcidid><orcidid>https://orcid.org/0000-0001-7984-1715</orcidid><orcidid>https://orcid.org/0000-0001-7941-6591</orcidid><orcidid>https://orcid.org/0000000188118625</orcidid><orcidid>https://orcid.org/0000000221648629</orcidid><orcidid>https://orcid.org/0000000256758027</orcidid><orcidid>https://orcid.org/0000000179841715</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000181539574</orcidid><orcidid>https://orcid.org/0000000179416591</orcidid></search><sort><creationdate>20240610</creationdate><title>Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates</title><author>Cordon, Michael J. ; Li, Meijun ; Yang, Xiaokun ; Neate, Peter G. N. ; Unocic, Kinga A. ; Li, Zhenglong ; Moore, Cameron M. ; Sutton, Andrew D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-4ba1f2b3ce5ba7040c9e2151fcf49c08ad7e5af76e74c707d62d1bc32d9009b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>2,3-butanediol</topic><topic>aldehydes</topic><topic>alkenes</topic><topic>aviation</topic><topic>biomass</topic><topic>carbon</topic><topic>catalysts</topic><topic>cost effectiveness</topic><topic>deactivation</topic><topic>dioxolane</topic><topic>energy industry</topic><topic>feedstocks</topic><topic>fermentation</topic><topic>fermented foods</topic><topic>green chemistry</topic><topic>hydrogenation</topic><topic>hydrophilicity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>oligomerization</topic><topic>stereochemistry</topic><topic>sustainable aviation fuel</topic><topic>temperature</topic><topic>toxicity</topic><topic>zeolites</topic><topic>ZSM-5</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cordon, Michael J.</creatorcontrib><creatorcontrib>Li, Meijun</creatorcontrib><creatorcontrib>Yang, Xiaokun</creatorcontrib><creatorcontrib>Neate, Peter G. N.</creatorcontrib><creatorcontrib>Unocic, Kinga A.</creatorcontrib><creatorcontrib>Li, Zhenglong</creatorcontrib><creatorcontrib>Moore, Cameron M.</creatorcontrib><creatorcontrib>Sutton, Andrew D.</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cordon, Michael J.</au><au>Li, Meijun</au><au>Yang, Xiaokun</au><au>Neate, Peter G. N.</au><au>Unocic, Kinga A.</au><au>Li, Zhenglong</au><au>Moore, Cameron M.</au><au>Sutton, Andrew D.</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-06-10</date><risdate>2024</risdate><volume>12</volume><issue>23</issue><spage>8702</spage><epage>8716</epage><pages>8702-8716</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>The cost-effective production of sustainable aviation fuels (SAF) remains a major challenge within the energy sector. One approach to address this is the fermentation of biomass feedstocks into oxygenates followed by catalytic conversion to alkenes or other oligomerization precursors. 2,3-Butanediol (BDO) is a promising fermentation product due to its four-carbon nature, its decreased microorganism toxicity and associated higher maximum fermentation titers relative to other alcohols and oxygenates, and its capacity to be readily converted into butene isomers and longer chain alkenes. BDO conversion is currently constrained by separation challenges for BDO isolation due to its high boiling point and hydrophilicity. This work expands upon previous BDO reactive separation via dioxolane formation over a solid acid catalyst by investigating the conversion of dioxolanes into alkene mixtures. Dioxolanes were formed from a range of aldehydes and subsequently converted over a Cu/ZSM-5 catalyst (448–523 K) via an ether cleavage, hydrogenation, and dehydration reaction network to form alkene-rich product mixtures (96% C3+ alkene yield, 523 K). This selectivity is greater than that of direct BDO conversion to alkenes over an identical catalyst (89%, 523 K). C3+ alkene selectivity is maximized between 498 and 523 K at complete dioxolane conversion without significant alkene hydrogenation to alkanes. The alkene product distributions can be tailored via both aldehyde selection during dioxolane formation and the dioxolane conversion reaction temperature. Alkene mixtures from dioxolane conversion predominantly reflect the carbon chain length and stereochemistry of BDO and the initial aldehyde at or below 498 K, yet higher reaction temperatures yield alkene mixtures of similar carbon chain distributions, regardless of initial aldehyde selection. Deactivation of the Cu/ZSM-5 catalyst is observed for multiple steps of the overall reaction network but can be minimized by facilitating the complete dioxolane-to-alkene reaction network at temperatures of at least 498 K.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c01155</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5675-8027</orcidid><orcidid>https://orcid.org/0000-0001-8811-8625</orcidid><orcidid>https://orcid.org/0000-0001-7984-1715</orcidid><orcidid>https://orcid.org/0000-0001-7941-6591</orcidid><orcidid>https://orcid.org/0000000188118625</orcidid><orcidid>https://orcid.org/0000000221648629</orcidid><orcidid>https://orcid.org/0000000256758027</orcidid><orcidid>https://orcid.org/0000000179841715</orcidid><orcidid>https://orcid.org/0000000279114064</orcidid><orcidid>https://orcid.org/0000000181539574</orcidid><orcidid>https://orcid.org/0000000179416591</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-06, Vol.12 (23), p.8702-8716
issn 2168-0485
2168-0485
language eng
recordid cdi_osti_scitechconnect_2376374
source ACS Publications
subjects 2,3-butanediol
aldehydes
alkenes
aviation
biomass
carbon
catalysts
cost effectiveness
deactivation
dioxolane
energy industry
feedstocks
fermentation
fermented foods
green chemistry
hydrogenation
hydrophilicity
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
oligomerization
stereochemistry
sustainable aviation fuel
temperature
toxicity
zeolites
ZSM-5
title Butene-Rich Alkene Formation from 2,3-Butanediol through Dioxolane Intermediates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A25%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Butene-Rich%20Alkene%20Formation%20from%202,3-Butanediol%20through%20Dioxolane%20Intermediates&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Cordon,%20Michael%20J.&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2024-06-10&rft.volume=12&rft.issue=23&rft.spage=8702&rft.epage=8716&rft.pages=8702-8716&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c01155&rft_dat=%3Cproquest_osti_%3E3153596159%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153596159&rft_id=info:pmid/&rfr_iscdi=true