Controls and relationships of soil organic carbon abundance and persistence vary across pedo‐climatic regions

One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Global change biology 2024-05, Vol.30 (5), p.e17320-n/a
Hauptverfasser: Fromm, Sophie F., Hoyt, Alison M., Sierra, Carlos A., Georgiou, Katerina, Doetterl, Sebastian, Trumbore, Susan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page e17320
container_title Global change biology
container_volume 30
creator Fromm, Sophie F.
Hoyt, Alison M.
Sierra, Carlos A.
Georgiou, Katerina
Doetterl, Sebastian
Trumbore, Susan E.
description One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C. We present a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the timescales of SOC storage. We use a combination of statistical and depth‐resolved compartment models to explore key factors controlling the relationships between SOC abundance and persistence across pedo‐climatic regions and with soil depth. This allows us to better understand (i) how SOC abundance and persistence covary across pedo‐climatic regions and (ii) how the depth dependence of SOC dynamics relates to climatic and mineralogical controls on SOC abundance and persistence. We show that SOC abundance and persistence are differently related; the controls on these relationships differ substantially between major pedo‐climatic regions and soil depth. For example, large amounts of persistent SOC can reflect climatic constraints on soils (e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposition and vertical transport rates. In contrast, lower SOC abundance can be found with lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persistence (e.g., in drier and less productive regions). We relate variable patterns of SOC abundance and persistence to differences in the processes constraining plant C input, microbial decomposition, vertical C transport and mineral SOC stabilization potential. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence. One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. We present a global synthesis of SOC and radiocarbon profiles to assess the timescales of SOC storage and the relationship between SOC abundance and persistence across pedo‐climatic regions. This process‐oriented groupin
doi_str_mv 10.1111/gcb.17320
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2375435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153546248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4080-b8fa18393e749fe536ba293607e012fa57871adfdd07e512f1169b7aa3a7bba13</originalsourceid><addsrcrecordid>eNqFkcFu1DAURS0EoqWw4AdQBBtYpPWLYydZwqiUSpXYwNp6dpypq4w92AlodnxCv7Ff0jeTwqISwhvbT8dH8r2MvQZ-CrTO1tacQiMq_oQdg1CyrOpWPd2fZV0CB3HEXuR8wzknRj1nR6JtJAjgxyyuYphSHHOBoS-SG3HyMeRrv81FHIoc_VjEtMbgbWExmRgKNHPoMVh3eLJ1Kfs8uf39J6ZdgTbFnGnex7vft3b0G1JaUq_34pfs2YBjdq8e9hP2_fP5t9WX8urrxeXq41Vpa97y0rQDQis64Zq6G5wUymDVCcUbx6EaUDZtA9gPfU8TSRMA1ZkGUWBjDII4YW8Xb8yT19n6ydlrG0NwdtKVaGQtJEHvF2ib4o_Z5UlvfLZuHDG4OGctQFKCitL8P8qlbDvolCL03SP0Js4p0G-JUlBVtRAVUR8W6hBXcoPeJooq7TRwvW9VU6v60Cqxbx6Ms9m4_i_5p0YCzhbglx_d7t8mfbH6tCjvATI7q-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3061224332</pqid></control><display><type>article</type><title>Controls and relationships of soil organic carbon abundance and persistence vary across pedo‐climatic regions</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Fromm, Sophie F. ; Hoyt, Alison M. ; Sierra, Carlos A. ; Georgiou, Katerina ; Doetterl, Sebastian ; Trumbore, Susan E.</creator><creatorcontrib>Fromm, Sophie F. ; Hoyt, Alison M. ; Sierra, Carlos A. ; Georgiou, Katerina ; Doetterl, Sebastian ; Trumbore, Susan E. ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C. We present a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the timescales of SOC storage. We use a combination of statistical and depth‐resolved compartment models to explore key factors controlling the relationships between SOC abundance and persistence across pedo‐climatic regions and with soil depth. This allows us to better understand (i) how SOC abundance and persistence covary across pedo‐climatic regions and (ii) how the depth dependence of SOC dynamics relates to climatic and mineralogical controls on SOC abundance and persistence. We show that SOC abundance and persistence are differently related; the controls on these relationships differ substantially between major pedo‐climatic regions and soil depth. For example, large amounts of persistent SOC can reflect climatic constraints on soils (e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposition and vertical transport rates. In contrast, lower SOC abundance can be found with lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persistence (e.g., in drier and less productive regions). We relate variable patterns of SOC abundance and persistence to differences in the processes constraining plant C input, microbial decomposition, vertical C transport and mineral SOC stabilization potential. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence. One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. We present a global synthesis of SOC and radiocarbon profiles to assess the timescales of SOC storage and the relationship between SOC abundance and persistence across pedo‐climatic regions. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence.</description><identifier>ISSN: 1354-1013</identifier><identifier>EISSN: 1365-2486</identifier><identifier>DOI: 10.1111/gcb.17320</identifier><identifier>PMID: 38751310</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>absorption ; Abundance ; biodegradation ; Boundary conditions ; C sequestration ; Carbon ; Carbon - analysis ; Carbon Cycle ; carbon radioisotopes ; carbon sequestration ; Climate ; Climate Change ; Climate effects ; Decomposition ; Depth ; ENVIRONMENTAL SCIENCES ; mass-preserving spline ; Microorganisms ; model benchmarking ; Models, Theoretical ; one-pool model ; Organic carbon ; Organic soils ; Polar environments ; Polar regions ; radiocarbon ; Radiocarbon dating ; Soil ; Soil - chemistry ; Soil depth ; Soil management ; soil mineralogy ; soil organic carbon ; Statistical analysis ; Tropical environments ; Tropical soils ; Tundra ; two-pool model ; Uncertainty ; Vertical advection</subject><ispartof>Global change biology, 2024-05, Vol.30 (5), p.e17320-n/a</ispartof><rights>2024 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2024 The Authors. Global Change Biology published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4080-b8fa18393e749fe536ba293607e012fa57871adfdd07e512f1169b7aa3a7bba13</cites><orcidid>0000-0002-2819-3292 ; 0000-0003-0813-5084 ; 0000-0003-0009-4169 ; 0000-0003-3885-6202 ; 0000-0002-1820-1455 ; 0000-0002-0986-891X ; 0000000338856202 ; 0000000300094169 ; 0000000308135084 ; 0000000218201455 ; 000000020986891X ; 0000000228193292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgcb.17320$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgcb.17320$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38751310$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2375435$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fromm, Sophie F.</creatorcontrib><creatorcontrib>Hoyt, Alison M.</creatorcontrib><creatorcontrib>Sierra, Carlos A.</creatorcontrib><creatorcontrib>Georgiou, Katerina</creatorcontrib><creatorcontrib>Doetterl, Sebastian</creatorcontrib><creatorcontrib>Trumbore, Susan E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Controls and relationships of soil organic carbon abundance and persistence vary across pedo‐climatic regions</title><title>Global change biology</title><addtitle>Glob Chang Biol</addtitle><description>One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C. We present a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the timescales of SOC storage. We use a combination of statistical and depth‐resolved compartment models to explore key factors controlling the relationships between SOC abundance and persistence across pedo‐climatic regions and with soil depth. This allows us to better understand (i) how SOC abundance and persistence covary across pedo‐climatic regions and (ii) how the depth dependence of SOC dynamics relates to climatic and mineralogical controls on SOC abundance and persistence. We show that SOC abundance and persistence are differently related; the controls on these relationships differ substantially between major pedo‐climatic regions and soil depth. For example, large amounts of persistent SOC can reflect climatic constraints on soils (e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposition and vertical transport rates. In contrast, lower SOC abundance can be found with lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persistence (e.g., in drier and less productive regions). We relate variable patterns of SOC abundance and persistence to differences in the processes constraining plant C input, microbial decomposition, vertical C transport and mineral SOC stabilization potential. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence. One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. We present a global synthesis of SOC and radiocarbon profiles to assess the timescales of SOC storage and the relationship between SOC abundance and persistence across pedo‐climatic regions. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence.</description><subject>absorption</subject><subject>Abundance</subject><subject>biodegradation</subject><subject>Boundary conditions</subject><subject>C sequestration</subject><subject>Carbon</subject><subject>Carbon - analysis</subject><subject>Carbon Cycle</subject><subject>carbon radioisotopes</subject><subject>carbon sequestration</subject><subject>Climate</subject><subject>Climate Change</subject><subject>Climate effects</subject><subject>Decomposition</subject><subject>Depth</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>mass-preserving spline</subject><subject>Microorganisms</subject><subject>model benchmarking</subject><subject>Models, Theoretical</subject><subject>one-pool model</subject><subject>Organic carbon</subject><subject>Organic soils</subject><subject>Polar environments</subject><subject>Polar regions</subject><subject>radiocarbon</subject><subject>Radiocarbon dating</subject><subject>Soil</subject><subject>Soil - chemistry</subject><subject>Soil depth</subject><subject>Soil management</subject><subject>soil mineralogy</subject><subject>soil organic carbon</subject><subject>Statistical analysis</subject><subject>Tropical environments</subject><subject>Tropical soils</subject><subject>Tundra</subject><subject>two-pool model</subject><subject>Uncertainty</subject><subject>Vertical advection</subject><issn>1354-1013</issn><issn>1365-2486</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkcFu1DAURS0EoqWw4AdQBBtYpPWLYydZwqiUSpXYwNp6dpypq4w92AlodnxCv7Ff0jeTwqISwhvbT8dH8r2MvQZ-CrTO1tacQiMq_oQdg1CyrOpWPd2fZV0CB3HEXuR8wzknRj1nR6JtJAjgxyyuYphSHHOBoS-SG3HyMeRrv81FHIoc_VjEtMbgbWExmRgKNHPoMVh3eLJ1Kfs8uf39J6ZdgTbFnGnex7vft3b0G1JaUq_34pfs2YBjdq8e9hP2_fP5t9WX8urrxeXq41Vpa97y0rQDQis64Zq6G5wUymDVCcUbx6EaUDZtA9gPfU8TSRMA1ZkGUWBjDII4YW8Xb8yT19n6ydlrG0NwdtKVaGQtJEHvF2ib4o_Z5UlvfLZuHDG4OGctQFKCitL8P8qlbDvolCL03SP0Js4p0G-JUlBVtRAVUR8W6hBXcoPeJooq7TRwvW9VU6v60Cqxbx6Ms9m4_i_5p0YCzhbglx_d7t8mfbH6tCjvATI7q-c</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Fromm, Sophie F.</creator><creator>Hoyt, Alison M.</creator><creator>Sierra, Carlos A.</creator><creator>Georgiou, Katerina</creator><creator>Doetterl, Sebastian</creator><creator>Trumbore, Susan E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2819-3292</orcidid><orcidid>https://orcid.org/0000-0003-0813-5084</orcidid><orcidid>https://orcid.org/0000-0003-0009-4169</orcidid><orcidid>https://orcid.org/0000-0003-3885-6202</orcidid><orcidid>https://orcid.org/0000-0002-1820-1455</orcidid><orcidid>https://orcid.org/0000-0002-0986-891X</orcidid><orcidid>https://orcid.org/0000000338856202</orcidid><orcidid>https://orcid.org/0000000300094169</orcidid><orcidid>https://orcid.org/0000000308135084</orcidid><orcidid>https://orcid.org/0000000218201455</orcidid><orcidid>https://orcid.org/000000020986891X</orcidid><orcidid>https://orcid.org/0000000228193292</orcidid></search><sort><creationdate>202405</creationdate><title>Controls and relationships of soil organic carbon abundance and persistence vary across pedo‐climatic regions</title><author>Fromm, Sophie F. ; Hoyt, Alison M. ; Sierra, Carlos A. ; Georgiou, Katerina ; Doetterl, Sebastian ; Trumbore, Susan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4080-b8fa18393e749fe536ba293607e012fa57871adfdd07e512f1169b7aa3a7bba13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>absorption</topic><topic>Abundance</topic><topic>biodegradation</topic><topic>Boundary conditions</topic><topic>C sequestration</topic><topic>Carbon</topic><topic>Carbon - analysis</topic><topic>Carbon Cycle</topic><topic>carbon radioisotopes</topic><topic>carbon sequestration</topic><topic>Climate</topic><topic>Climate Change</topic><topic>Climate effects</topic><topic>Decomposition</topic><topic>Depth</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>mass-preserving spline</topic><topic>Microorganisms</topic><topic>model benchmarking</topic><topic>Models, Theoretical</topic><topic>one-pool model</topic><topic>Organic carbon</topic><topic>Organic soils</topic><topic>Polar environments</topic><topic>Polar regions</topic><topic>radiocarbon</topic><topic>Radiocarbon dating</topic><topic>Soil</topic><topic>Soil - chemistry</topic><topic>Soil depth</topic><topic>Soil management</topic><topic>soil mineralogy</topic><topic>soil organic carbon</topic><topic>Statistical analysis</topic><topic>Tropical environments</topic><topic>Tropical soils</topic><topic>Tundra</topic><topic>two-pool model</topic><topic>Uncertainty</topic><topic>Vertical advection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fromm, Sophie F.</creatorcontrib><creatorcontrib>Hoyt, Alison M.</creatorcontrib><creatorcontrib>Sierra, Carlos A.</creatorcontrib><creatorcontrib>Georgiou, Katerina</creatorcontrib><creatorcontrib>Doetterl, Sebastian</creatorcontrib><creatorcontrib>Trumbore, Susan E.</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Global change biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fromm, Sophie F.</au><au>Hoyt, Alison M.</au><au>Sierra, Carlos A.</au><au>Georgiou, Katerina</au><au>Doetterl, Sebastian</au><au>Trumbore, Susan E.</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controls and relationships of soil organic carbon abundance and persistence vary across pedo‐climatic regions</atitle><jtitle>Global change biology</jtitle><addtitle>Glob Chang Biol</addtitle><date>2024-05</date><risdate>2024</risdate><volume>30</volume><issue>5</issue><spage>e17320</spage><epage>n/a</epage><pages>e17320-n/a</pages><issn>1354-1013</issn><eissn>1365-2486</eissn><abstract>One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. This uncertainty prevents models from adequately capturing SOC dynamics and challenges the assessment of management and climate change effects on soils. Reducing these uncertainties requires simultaneous investigation of factors controlling the amount (SOC abundance) and duration (SOC persistence) of stored C. We present a global synthesis of SOC and radiocarbon profiles (nProfile = 597) to assess the timescales of SOC storage. We use a combination of statistical and depth‐resolved compartment models to explore key factors controlling the relationships between SOC abundance and persistence across pedo‐climatic regions and with soil depth. This allows us to better understand (i) how SOC abundance and persistence covary across pedo‐climatic regions and (ii) how the depth dependence of SOC dynamics relates to climatic and mineralogical controls on SOC abundance and persistence. We show that SOC abundance and persistence are differently related; the controls on these relationships differ substantially between major pedo‐climatic regions and soil depth. For example, large amounts of persistent SOC can reflect climatic constraints on soils (e.g., in tundra/polar regions) or mineral absorption, reflected in slower decomposition and vertical transport rates. In contrast, lower SOC abundance can be found with lower SOC persistence (e.g., in highly weathered tropical soils) or higher SOC persistence (e.g., in drier and less productive regions). We relate variable patterns of SOC abundance and persistence to differences in the processes constraining plant C input, microbial decomposition, vertical C transport and mineral SOC stabilization potential. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence. One of the largest uncertainties in the terrestrial carbon cycle is the timing and magnitude of soil organic carbon (SOC) response to climate and vegetation change. We present a global synthesis of SOC and radiocarbon profiles to assess the timescales of SOC storage and the relationship between SOC abundance and persistence across pedo‐climatic regions. This process‐oriented grouping of SOC abundance and persistence provides a valuable benchmark for global C models, highlighting that pedo‐climatic boundary conditions are crucial for predicting the effects of climate change and soil management on future C abundance and persistence.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>38751310</pmid><doi>10.1111/gcb.17320</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-2819-3292</orcidid><orcidid>https://orcid.org/0000-0003-0813-5084</orcidid><orcidid>https://orcid.org/0000-0003-0009-4169</orcidid><orcidid>https://orcid.org/0000-0003-3885-6202</orcidid><orcidid>https://orcid.org/0000-0002-1820-1455</orcidid><orcidid>https://orcid.org/0000-0002-0986-891X</orcidid><orcidid>https://orcid.org/0000000338856202</orcidid><orcidid>https://orcid.org/0000000300094169</orcidid><orcidid>https://orcid.org/0000000308135084</orcidid><orcidid>https://orcid.org/0000000218201455</orcidid><orcidid>https://orcid.org/000000020986891X</orcidid><orcidid>https://orcid.org/0000000228193292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1354-1013
ispartof Global change biology, 2024-05, Vol.30 (5), p.e17320-n/a
issn 1354-1013
1365-2486
language eng
recordid cdi_osti_scitechconnect_2375435
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects absorption
Abundance
biodegradation
Boundary conditions
C sequestration
Carbon
Carbon - analysis
Carbon Cycle
carbon radioisotopes
carbon sequestration
Climate
Climate Change
Climate effects
Decomposition
Depth
ENVIRONMENTAL SCIENCES
mass-preserving spline
Microorganisms
model benchmarking
Models, Theoretical
one-pool model
Organic carbon
Organic soils
Polar environments
Polar regions
radiocarbon
Radiocarbon dating
Soil
Soil - chemistry
Soil depth
Soil management
soil mineralogy
soil organic carbon
Statistical analysis
Tropical environments
Tropical soils
Tundra
two-pool model
Uncertainty
Vertical advection
title Controls and relationships of soil organic carbon abundance and persistence vary across pedo‐climatic regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A31%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controls%20and%20relationships%20of%20soil%20organic%20carbon%20abundance%20and%20persistence%20vary%20across%20pedo%E2%80%90climatic%20regions&rft.jtitle=Global%20change%20biology&rft.au=Fromm,%20Sophie%20F.&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2024-05&rft.volume=30&rft.issue=5&rft.spage=e17320&rft.epage=n/a&rft.pages=e17320-n/a&rft.issn=1354-1013&rft.eissn=1365-2486&rft_id=info:doi/10.1111/gcb.17320&rft_dat=%3Cproquest_osti_%3E3153546248%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3061224332&rft_id=info:pmid/38751310&rfr_iscdi=true