Leveraging Extremal Dependence to Better Characterize the 2021 Pacific Northwest Heatwave

In late June, 2021, a devastating heatwave affected the US Pacific Northwest and western Canada, breaking numerous all-time temperature records by large margins and directly causing hundreds of fatalities. The observed 2021 daily maximum temperature across much of the U.S. Pacific Northwest exceeded...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural, biological, and environmental statistics biological, and environmental statistics, 2024-06
Hauptverfasser: Zhang, Likun, Risser, Mark D., Wehner, Michael F., O’Brien, Travis A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of agricultural, biological, and environmental statistics
container_volume
creator Zhang, Likun
Risser, Mark D.
Wehner, Michael F.
O’Brien, Travis A.
description In late June, 2021, a devastating heatwave affected the US Pacific Northwest and western Canada, breaking numerous all-time temperature records by large margins and directly causing hundreds of fatalities. The observed 2021 daily maximum temperature across much of the U.S. Pacific Northwest exceeded upper bound estimates obtained from single-station temperature records even after accounting for anthropogenic climate change, meaning that the event could not have been predicted under standard univariate extreme value analysis assumptions. In this work, we utilize a flexible spatial extremes model that considers all stations across the Pacific Northwest domain and accounts for the fact that many stations simultaneously experience extreme temperatures. Our analysis incorporates the effects of anthropogenic forcing and natural climate variability in order to better characterize time-varying changes in the distribution of daily temperature extremes. We show that greenhouse gas forcing, drought conditions and large-scale atmospheric modes of variability all have significant impact on summertime maximum temperatures in this region. Our model represents a significant improvement over corresponding single-station analysis, and our posterior medians of the upper bounds are able to anticipate more than 96% of the observed 2021 high station temperatures after properly accounting for extremal dependence. Supplementary materials accompanying this paper appear online.
doi_str_mv 10.1007/s13253-024-00636-8
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2373275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_s13253_024_00636_8</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-dc65bf87376dce3bba6fedcf0f2fa3f2ef6ddfc6fcf0ad8d0b11d308e6c969323</originalsourceid><addsrcrecordid>eNotkEFPAyEUhInRxFr9A56Id_QBLmyPWqs1adSDHjwRFh7dNe1uA6RVf71oPc1kMnl58xFyzuGSA-irxKWoJANxzQCUVKw-ICNeSc2EmsjD4qGumOZcH5OTlD4AuFQgRuR9gVuMdtn1Szr7zBHXdkXvcIO9x94hzQO9xZwx0mlro3XFdd8lbpEKEJy-WNeFztGnIeZ2hynTOdq8s1s8JUfBrhKe_euYvN3PXqdztnh-eJzeLJgrr2XmnaqaUGuplXcom8aqgN4FCCJYGQQG5X1wKpTI-tpDw7mXUKNykzJNyDG52N8dUu5Mcl1G17qh79FlI6SWQlelJPYlF4eUIgazid3axi_DwfwSNHuCphA0fwRNLX8AuKNlbA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Leveraging Extremal Dependence to Better Characterize the 2021 Pacific Northwest Heatwave</title><source>SpringerLink Journals (MCLS)</source><creator>Zhang, Likun ; Risser, Mark D. ; Wehner, Michael F. ; O’Brien, Travis A.</creator><creatorcontrib>Zhang, Likun ; Risser, Mark D. ; Wehner, Michael F. ; O’Brien, Travis A.</creatorcontrib><description>In late June, 2021, a devastating heatwave affected the US Pacific Northwest and western Canada, breaking numerous all-time temperature records by large margins and directly causing hundreds of fatalities. The observed 2021 daily maximum temperature across much of the U.S. Pacific Northwest exceeded upper bound estimates obtained from single-station temperature records even after accounting for anthropogenic climate change, meaning that the event could not have been predicted under standard univariate extreme value analysis assumptions. In this work, we utilize a flexible spatial extremes model that considers all stations across the Pacific Northwest domain and accounts for the fact that many stations simultaneously experience extreme temperatures. Our analysis incorporates the effects of anthropogenic forcing and natural climate variability in order to better characterize time-varying changes in the distribution of daily temperature extremes. We show that greenhouse gas forcing, drought conditions and large-scale atmospheric modes of variability all have significant impact on summertime maximum temperatures in this region. Our model represents a significant improvement over corresponding single-station analysis, and our posterior medians of the upper bounds are able to anticipate more than 96% of the observed 2021 high station temperatures after properly accounting for extremal dependence. Supplementary materials accompanying this paper appear online.</description><identifier>ISSN: 1085-7117</identifier><identifier>EISSN: 1537-2693</identifier><identifier>DOI: 10.1007/s13253-024-00636-8</identifier><language>eng</language><publisher>United States: Springer Science + Business Media</publisher><ispartof>Journal of agricultural, biological, and environmental statistics, 2024-06</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c269t-dc65bf87376dce3bba6fedcf0f2fa3f2ef6ddfc6fcf0ad8d0b11d308e6c969323</cites><orcidid>0000-0001-5458-4556 ; 0000000154584556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2373275$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Likun</creatorcontrib><creatorcontrib>Risser, Mark D.</creatorcontrib><creatorcontrib>Wehner, Michael F.</creatorcontrib><creatorcontrib>O’Brien, Travis A.</creatorcontrib><title>Leveraging Extremal Dependence to Better Characterize the 2021 Pacific Northwest Heatwave</title><title>Journal of agricultural, biological, and environmental statistics</title><description>In late June, 2021, a devastating heatwave affected the US Pacific Northwest and western Canada, breaking numerous all-time temperature records by large margins and directly causing hundreds of fatalities. The observed 2021 daily maximum temperature across much of the U.S. Pacific Northwest exceeded upper bound estimates obtained from single-station temperature records even after accounting for anthropogenic climate change, meaning that the event could not have been predicted under standard univariate extreme value analysis assumptions. In this work, we utilize a flexible spatial extremes model that considers all stations across the Pacific Northwest domain and accounts for the fact that many stations simultaneously experience extreme temperatures. Our analysis incorporates the effects of anthropogenic forcing and natural climate variability in order to better characterize time-varying changes in the distribution of daily temperature extremes. We show that greenhouse gas forcing, drought conditions and large-scale atmospheric modes of variability all have significant impact on summertime maximum temperatures in this region. Our model represents a significant improvement over corresponding single-station analysis, and our posterior medians of the upper bounds are able to anticipate more than 96% of the observed 2021 high station temperatures after properly accounting for extremal dependence. Supplementary materials accompanying this paper appear online.</description><issn>1085-7117</issn><issn>1537-2693</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkEFPAyEUhInRxFr9A56Id_QBLmyPWqs1adSDHjwRFh7dNe1uA6RVf71oPc1kMnl58xFyzuGSA-irxKWoJANxzQCUVKw-ICNeSc2EmsjD4qGumOZcH5OTlD4AuFQgRuR9gVuMdtn1Szr7zBHXdkXvcIO9x94hzQO9xZwx0mlro3XFdd8lbpEKEJy-WNeFztGnIeZ2hynTOdq8s1s8JUfBrhKe_euYvN3PXqdztnh-eJzeLJgrr2XmnaqaUGuplXcom8aqgN4FCCJYGQQG5X1wKpTI-tpDw7mXUKNykzJNyDG52N8dUu5Mcl1G17qh79FlI6SWQlelJPYlF4eUIgazid3axi_DwfwSNHuCphA0fwRNLX8AuKNlbA</recordid><startdate>20240614</startdate><enddate>20240614</enddate><creator>Zhang, Likun</creator><creator>Risser, Mark D.</creator><creator>Wehner, Michael F.</creator><creator>O’Brien, Travis A.</creator><general>Springer Science + Business Media</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5458-4556</orcidid><orcidid>https://orcid.org/0000000154584556</orcidid></search><sort><creationdate>20240614</creationdate><title>Leveraging Extremal Dependence to Better Characterize the 2021 Pacific Northwest Heatwave</title><author>Zhang, Likun ; Risser, Mark D. ; Wehner, Michael F. ; O’Brien, Travis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-dc65bf87376dce3bba6fedcf0f2fa3f2ef6ddfc6fcf0ad8d0b11d308e6c969323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Likun</creatorcontrib><creatorcontrib>Risser, Mark D.</creatorcontrib><creatorcontrib>Wehner, Michael F.</creatorcontrib><creatorcontrib>O’Brien, Travis A.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Likun</au><au>Risser, Mark D.</au><au>Wehner, Michael F.</au><au>O’Brien, Travis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Extremal Dependence to Better Characterize the 2021 Pacific Northwest Heatwave</atitle><jtitle>Journal of agricultural, biological, and environmental statistics</jtitle><date>2024-06-14</date><risdate>2024</risdate><issn>1085-7117</issn><eissn>1537-2693</eissn><abstract>In late June, 2021, a devastating heatwave affected the US Pacific Northwest and western Canada, breaking numerous all-time temperature records by large margins and directly causing hundreds of fatalities. The observed 2021 daily maximum temperature across much of the U.S. Pacific Northwest exceeded upper bound estimates obtained from single-station temperature records even after accounting for anthropogenic climate change, meaning that the event could not have been predicted under standard univariate extreme value analysis assumptions. In this work, we utilize a flexible spatial extremes model that considers all stations across the Pacific Northwest domain and accounts for the fact that many stations simultaneously experience extreme temperatures. Our analysis incorporates the effects of anthropogenic forcing and natural climate variability in order to better characterize time-varying changes in the distribution of daily temperature extremes. We show that greenhouse gas forcing, drought conditions and large-scale atmospheric modes of variability all have significant impact on summertime maximum temperatures in this region. Our model represents a significant improvement over corresponding single-station analysis, and our posterior medians of the upper bounds are able to anticipate more than 96% of the observed 2021 high station temperatures after properly accounting for extremal dependence. Supplementary materials accompanying this paper appear online.</abstract><cop>United States</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s13253-024-00636-8</doi><orcidid>https://orcid.org/0000-0001-5458-4556</orcidid><orcidid>https://orcid.org/0000000154584556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-7117
ispartof Journal of agricultural, biological, and environmental statistics, 2024-06
issn 1085-7117
1537-2693
language eng
recordid cdi_osti_scitechconnect_2373275
source SpringerLink Journals (MCLS)
title Leveraging Extremal Dependence to Better Characterize the 2021 Pacific Northwest Heatwave
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T17%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Extremal%20Dependence%20to%20Better%20Characterize%20the%202021%20Pacific%20Northwest%20Heatwave&rft.jtitle=Journal%20of%20agricultural,%20biological,%20and%20environmental%20statistics&rft.au=Zhang,%20Likun&rft.date=2024-06-14&rft.issn=1085-7117&rft.eissn=1537-2693&rft_id=info:doi/10.1007/s13253-024-00636-8&rft_dat=%3Ccrossref_osti_%3E10_1007_s13253_024_00636_8%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true