Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory
Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport comp...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-03, Vol.132 (10) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review letters |
container_volume | 132 |
creator | Zhou, Shuxiang Xiao, Enda Ma, Hao Gofryk, Krzysztof Jiang, Chao Manley, Michael E. Hurley, David H. Marianetti, Chris A. |
description | Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution. |
doi_str_mv | 10.1103/PhysRevLett.132.106502 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2371876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371876</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-abba4ba756950555f7e320210fa0177c4a7484eb2877cf3631afedc03265dcd33</originalsourceid><addsrcrecordid>eNotjEFLwzAYQHNQcE7_ggTvrV-SJumOUnQKhRXtziNNv9BKTSSJg_17he30eIf3CHlgUDIG4qmbTukDjy3mXDLBSwZKAr8iKwDBig2AviG3KX0BAOOqXpFtNwUfPO0njN9moX00Pv2EmOns6X7H6XE29BMXVzTBpzll9Jl2GPNvHEyez2WIpzty7cyS8P7CNdm_vvTNW9Hutu_Nc1sEVvNcmGEw1WC0VBsJUkqnUXDgDJwBprWtjK7qCgde_4sTSjDjcLQguJKjHYVYk8fzN6Q8H5KdM9rJBu_R5gMXmtVaiT8HiE67</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Shuxiang ; Xiao, Enda ; Ma, Hao ; Gofryk, Krzysztof ; Jiang, Chao ; Manley, Michael E. ; Hurley, David H. ; Marianetti, Chris A.</creator><creatorcontrib>Zhou, Shuxiang ; Xiao, Enda ; Ma, Hao ; Gofryk, Krzysztof ; Jiang, Chao ; Manley, Michael E. ; Hurley, David H. ; Marianetti, Chris A. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI) ; Idaho National Laboratory (INL), Idaho Falls, ID (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.</description><identifier>ISSN: 0031-9007</identifier><identifier>DOI: 10.1103/PhysRevLett.132.106502</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>MATERIALS SCIENCE ; phonon ; self-consistent perturbation theory ; thermal transport ; uranium dioxide</subject><ispartof>Physical review letters, 2024-03, Vol.132 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000250291251 ; 0000000306106327 ; 0000000261400089 ; 0000000286816857 ; 0000000218451518 ; 0000000340539986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2371876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Shuxiang</creatorcontrib><creatorcontrib>Xiao, Enda</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><creatorcontrib>Gofryk, Krzysztof</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Manley, Michael E.</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Marianetti, Chris A.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</title><title>Physical review letters</title><description>Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.</description><subject>MATERIALS SCIENCE</subject><subject>phonon</subject><subject>self-consistent perturbation theory</subject><subject>thermal transport</subject><subject>uranium dioxide</subject><issn>0031-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjEFLwzAYQHNQcE7_ggTvrV-SJumOUnQKhRXtziNNv9BKTSSJg_17he30eIf3CHlgUDIG4qmbTukDjy3mXDLBSwZKAr8iKwDBig2AviG3KX0BAOOqXpFtNwUfPO0njN9moX00Pv2EmOns6X7H6XE29BMXVzTBpzll9Jl2GPNvHEyez2WIpzty7cyS8P7CNdm_vvTNW9Hutu_Nc1sEVvNcmGEw1WC0VBsJUkqnUXDgDJwBprWtjK7qCgde_4sTSjDjcLQguJKjHYVYk8fzN6Q8H5KdM9rJBu_R5gMXmtVaiT8HiE67</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Zhou, Shuxiang</creator><creator>Xiao, Enda</creator><creator>Ma, Hao</creator><creator>Gofryk, Krzysztof</creator><creator>Jiang, Chao</creator><creator>Manley, Michael E.</creator><creator>Hurley, David H.</creator><creator>Marianetti, Chris A.</creator><general>American Physical Society (APS)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000250291251</orcidid><orcidid>https://orcid.org/0000000306106327</orcidid><orcidid>https://orcid.org/0000000261400089</orcidid><orcidid>https://orcid.org/0000000286816857</orcidid><orcidid>https://orcid.org/0000000218451518</orcidid><orcidid>https://orcid.org/0000000340539986</orcidid></search><sort><creationdate>20240306</creationdate><title>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</title><author>Zhou, Shuxiang ; Xiao, Enda ; Ma, Hao ; Gofryk, Krzysztof ; Jiang, Chao ; Manley, Michael E. ; Hurley, David H. ; Marianetti, Chris A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-abba4ba756950555f7e320210fa0177c4a7484eb2877cf3631afedc03265dcd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>MATERIALS SCIENCE</topic><topic>phonon</topic><topic>self-consistent perturbation theory</topic><topic>thermal transport</topic><topic>uranium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shuxiang</creatorcontrib><creatorcontrib>Xiao, Enda</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><creatorcontrib>Gofryk, Krzysztof</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Manley, Michael E.</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Marianetti, Chris A.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shuxiang</au><au>Xiao, Enda</au><au>Ma, Hao</au><au>Gofryk, Krzysztof</au><au>Jiang, Chao</au><au>Manley, Michael E.</au><au>Hurley, David H.</au><au>Marianetti, Chris A.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI)</aucorp><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</atitle><jtitle>Physical review letters</jtitle><date>2024-03-06</date><risdate>2024</risdate><volume>132</volume><issue>10</issue><issn>0031-9007</issn><abstract>Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevLett.132.106502</doi><orcidid>https://orcid.org/0000000250291251</orcidid><orcidid>https://orcid.org/0000000306106327</orcidid><orcidid>https://orcid.org/0000000261400089</orcidid><orcidid>https://orcid.org/0000000286816857</orcidid><orcidid>https://orcid.org/0000000218451518</orcidid><orcidid>https://orcid.org/0000000340539986</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2024-03, Vol.132 (10) |
issn | 0031-9007 |
language | eng |
recordid | cdi_osti_scitechconnect_2371876 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | MATERIALS SCIENCE phonon self-consistent perturbation theory thermal transport uranium dioxide |
title | Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon%20Thermal%20Transport%20in%20UO2%20via%20Self-Consistent%20Perturbation%20Theory&rft.jtitle=Physical%20review%20letters&rft.au=Zhou,%20Shuxiang&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-03-06&rft.volume=132&rft.issue=10&rft.issn=0031-9007&rft_id=info:doi/10.1103/PhysRevLett.132.106502&rft_dat=%3Costi%3E2371876%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |