Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory

Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2024-03, Vol.132 (10)
Hauptverfasser: Zhou, Shuxiang, Xiao, Enda, Ma, Hao, Gofryk, Krzysztof, Jiang, Chao, Manley, Michael E., Hurley, David H., Marianetti, Chris A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review letters
container_volume 132
creator Zhou, Shuxiang
Xiao, Enda
Ma, Hao
Gofryk, Krzysztof
Jiang, Chao
Manley, Michael E.
Hurley, David H.
Marianetti, Chris A.
description Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.
doi_str_mv 10.1103/PhysRevLett.132.106502
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2371876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371876</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-abba4ba756950555f7e320210fa0177c4a7484eb2877cf3631afedc03265dcd33</originalsourceid><addsrcrecordid>eNotjEFLwzAYQHNQcE7_ggTvrV-SJumOUnQKhRXtziNNv9BKTSSJg_17he30eIf3CHlgUDIG4qmbTukDjy3mXDLBSwZKAr8iKwDBig2AviG3KX0BAOOqXpFtNwUfPO0njN9moX00Pv2EmOns6X7H6XE29BMXVzTBpzll9Jl2GPNvHEyez2WIpzty7cyS8P7CNdm_vvTNW9Hutu_Nc1sEVvNcmGEw1WC0VBsJUkqnUXDgDJwBprWtjK7qCgde_4sTSjDjcLQguJKjHYVYk8fzN6Q8H5KdM9rJBu_R5gMXmtVaiT8HiE67</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhou, Shuxiang ; Xiao, Enda ; Ma, Hao ; Gofryk, Krzysztof ; Jiang, Chao ; Manley, Michael E. ; Hurley, David H. ; Marianetti, Chris A.</creator><creatorcontrib>Zhou, Shuxiang ; Xiao, Enda ; Ma, Hao ; Gofryk, Krzysztof ; Jiang, Chao ; Manley, Michael E. ; Hurley, David H. ; Marianetti, Chris A. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) ; Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI) ; Idaho National Laboratory (INL), Idaho Falls, ID (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.</description><identifier>ISSN: 0031-9007</identifier><identifier>DOI: 10.1103/PhysRevLett.132.106502</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>MATERIALS SCIENCE ; phonon ; self-consistent perturbation theory ; thermal transport ; uranium dioxide</subject><ispartof>Physical review letters, 2024-03, Vol.132 (10)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000250291251 ; 0000000306106327 ; 0000000261400089 ; 0000000286816857 ; 0000000218451518 ; 0000000340539986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27933,27934</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2371876$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Shuxiang</creatorcontrib><creatorcontrib>Xiao, Enda</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><creatorcontrib>Gofryk, Krzysztof</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Manley, Michael E.</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Marianetti, Chris A.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</title><title>Physical review letters</title><description>Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.</description><subject>MATERIALS SCIENCE</subject><subject>phonon</subject><subject>self-consistent perturbation theory</subject><subject>thermal transport</subject><subject>uranium dioxide</subject><issn>0031-9007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotjEFLwzAYQHNQcE7_ggTvrV-SJumOUnQKhRXtziNNv9BKTSSJg_17he30eIf3CHlgUDIG4qmbTukDjy3mXDLBSwZKAr8iKwDBig2AviG3KX0BAOOqXpFtNwUfPO0njN9moX00Pv2EmOns6X7H6XE29BMXVzTBpzll9Jl2GPNvHEyez2WIpzty7cyS8P7CNdm_vvTNW9Hutu_Nc1sEVvNcmGEw1WC0VBsJUkqnUXDgDJwBprWtjK7qCgde_4sTSjDjcLQguJKjHYVYk8fzN6Q8H5KdM9rJBu_R5gMXmtVaiT8HiE67</recordid><startdate>20240306</startdate><enddate>20240306</enddate><creator>Zhou, Shuxiang</creator><creator>Xiao, Enda</creator><creator>Ma, Hao</creator><creator>Gofryk, Krzysztof</creator><creator>Jiang, Chao</creator><creator>Manley, Michael E.</creator><creator>Hurley, David H.</creator><creator>Marianetti, Chris A.</creator><general>American Physical Society (APS)</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000250291251</orcidid><orcidid>https://orcid.org/0000000306106327</orcidid><orcidid>https://orcid.org/0000000261400089</orcidid><orcidid>https://orcid.org/0000000286816857</orcidid><orcidid>https://orcid.org/0000000218451518</orcidid><orcidid>https://orcid.org/0000000340539986</orcidid></search><sort><creationdate>20240306</creationdate><title>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</title><author>Zhou, Shuxiang ; Xiao, Enda ; Ma, Hao ; Gofryk, Krzysztof ; Jiang, Chao ; Manley, Michael E. ; Hurley, David H. ; Marianetti, Chris A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-abba4ba756950555f7e320210fa0177c4a7484eb2877cf3631afedc03265dcd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>MATERIALS SCIENCE</topic><topic>phonon</topic><topic>self-consistent perturbation theory</topic><topic>thermal transport</topic><topic>uranium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Shuxiang</creatorcontrib><creatorcontrib>Xiao, Enda</creatorcontrib><creatorcontrib>Ma, Hao</creatorcontrib><creatorcontrib>Gofryk, Krzysztof</creatorcontrib><creatorcontrib>Jiang, Chao</creatorcontrib><creatorcontrib>Manley, Michael E.</creatorcontrib><creatorcontrib>Hurley, David H.</creatorcontrib><creatorcontrib>Marianetti, Chris A.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI)</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Shuxiang</au><au>Xiao, Enda</au><au>Ma, Hao</au><au>Gofryk, Krzysztof</au><au>Jiang, Chao</au><au>Manley, Michael E.</au><au>Hurley, David H.</au><au>Marianetti, Chris A.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Thermal Energy Transport under Irradiation (TETI)</aucorp><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory</atitle><jtitle>Physical review letters</jtitle><date>2024-03-06</date><risdate>2024</risdate><volume>132</volume><issue>10</issue><issn>0031-9007</issn><abstract>Computing thermal transport from first-principles in UO2 is complicated due to the challenges associated with Mott physics. Here, we use irreducible derivative approaches to compute the cubic and quartic phonon interactions in UO2 from first principles, and we perform enhanced thermal transport computations by evaluating the phonon Green’s function via self-consistent diagrammatic perturbation theory. Our predicted phonon lifetimes at T = 600 K agree well with our inelastic neutron scattering measurements across the entire Brillouin zone, and our thermal conductivity predictions agree well with previous measurements. Finally, both the changes due to thermal expansion and self-consistent contributions are nontrivial at high temperatures, though the effects tend to cancel, and interband transitions yield a substantial contribution.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevLett.132.106502</doi><orcidid>https://orcid.org/0000000250291251</orcidid><orcidid>https://orcid.org/0000000306106327</orcidid><orcidid>https://orcid.org/0000000261400089</orcidid><orcidid>https://orcid.org/0000000286816857</orcidid><orcidid>https://orcid.org/0000000218451518</orcidid><orcidid>https://orcid.org/0000000340539986</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2024-03, Vol.132 (10)
issn 0031-9007
language eng
recordid cdi_osti_scitechconnect_2371876
source American Physical Society Journals; EZB-FREE-00999 freely available EZB journals
subjects MATERIALS SCIENCE
phonon
self-consistent perturbation theory
thermal transport
uranium dioxide
title Phonon Thermal Transport in UO2 via Self-Consistent Perturbation Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T06%3A46%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phonon%20Thermal%20Transport%20in%20UO2%20via%20Self-Consistent%20Perturbation%20Theory&rft.jtitle=Physical%20review%20letters&rft.au=Zhou,%20Shuxiang&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-03-06&rft.volume=132&rft.issue=10&rft.issn=0031-9007&rft_id=info:doi/10.1103/PhysRevLett.132.106502&rft_dat=%3Costi%3E2371876%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true