Cost analysis of hydrogen production by high-temperature solid oxide electrolysis
In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assem...
Gespeichert in:
Veröffentlicht in: | International journal of hydrogen energy 2023-08, Vol.49 (C) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | |
container_title | International journal of hydrogen energy |
container_volume | 49 |
creator | Prosser, Jacob H. James, Brian D. Murphy, Brian M. Wendt, Daniel S. Casteel, Micah J. Westover, Tyler L. Knighton, L. Todd |
description | In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to 500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises >50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2371551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371551</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23715513</originalsourceid><addsrcrecordid>eNqNjb0KwjAURjMoWH_e4eJeSIy1dC6Kq-BeanLbRGJuSVKwb28RH8DpW84534JlXJ54LkVVrdg6xifnouTHKmO3mmKC1rduijYCdWAmHahHD0MgPapkycNjAmN7kyd8DRjaNAaESM5qoLfVCOhQpUDfxpYtu9ZF3P12w_aX872-5vORbaKyCZVR5P2sNAdZiqIQ8i_oA0BKP8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Prosser, Jacob H. ; James, Brian D. ; Murphy, Brian M. ; Wendt, Daniel S. ; Casteel, Micah J. ; Westover, Tyler L. ; Knighton, L. Todd</creator><creatorcontrib>Prosser, Jacob H. ; James, Brian D. ; Murphy, Brian M. ; Wendt, Daniel S. ; Casteel, Micah J. ; Westover, Tyler L. ; Knighton, L. Todd ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to <$100/kWe DCSIP for >500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises >50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.</description><identifier>ISSN: 0360-3199</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>08 HYDROGEN ; Balance of plant (BOP) process equipment ; Design for manufacturing & assembly (DFMA) ; electrolysis ; Electrolyte-supported & hydrogen electrode-supported electrolysis cells ; Factory assembly & integration ; high temperature electrolysis ; hydrogen ; Levelized cost of hydrogen (LCOH) ; Modular design & fabrication</subject><ispartof>International journal of hydrogen energy, 2023-08, Vol.49 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000292792433 ; 0000000347280380 ; 000000019884222X ; 0000000344914296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2371551$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Prosser, Jacob H.</creatorcontrib><creatorcontrib>James, Brian D.</creatorcontrib><creatorcontrib>Murphy, Brian M.</creatorcontrib><creatorcontrib>Wendt, Daniel S.</creatorcontrib><creatorcontrib>Casteel, Micah J.</creatorcontrib><creatorcontrib>Westover, Tyler L.</creatorcontrib><creatorcontrib>Knighton, L. Todd</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</title><title>International journal of hydrogen energy</title><description>In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to <$100/kWe DCSIP for >500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises >50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.</description><subject>08 HYDROGEN</subject><subject>Balance of plant (BOP) process equipment</subject><subject>Design for manufacturing & assembly (DFMA)</subject><subject>electrolysis</subject><subject>Electrolyte-supported & hydrogen electrode-supported electrolysis cells</subject><subject>Factory assembly & integration</subject><subject>high temperature electrolysis</subject><subject>hydrogen</subject><subject>Levelized cost of hydrogen (LCOH)</subject><subject>Modular design & fabrication</subject><issn>0360-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KwjAURjMoWH_e4eJeSIy1dC6Kq-BeanLbRGJuSVKwb28RH8DpW84534JlXJ54LkVVrdg6xifnouTHKmO3mmKC1rduijYCdWAmHahHD0MgPapkycNjAmN7kyd8DRjaNAaESM5qoLfVCOhQpUDfxpYtu9ZF3P12w_aX872-5vORbaKyCZVR5P2sNAdZiqIQ8i_oA0BKP8s</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Prosser, Jacob H.</creator><creator>James, Brian D.</creator><creator>Murphy, Brian M.</creator><creator>Wendt, Daniel S.</creator><creator>Casteel, Micah J.</creator><creator>Westover, Tyler L.</creator><creator>Knighton, L. Todd</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292792433</orcidid><orcidid>https://orcid.org/0000000347280380</orcidid><orcidid>https://orcid.org/000000019884222X</orcidid><orcidid>https://orcid.org/0000000344914296</orcidid></search><sort><creationdate>20230822</creationdate><title>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</title><author>Prosser, Jacob H. ; James, Brian D. ; Murphy, Brian M. ; Wendt, Daniel S. ; Casteel, Micah J. ; Westover, Tyler L. ; Knighton, L. Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23715513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>08 HYDROGEN</topic><topic>Balance of plant (BOP) process equipment</topic><topic>Design for manufacturing & assembly (DFMA)</topic><topic>electrolysis</topic><topic>Electrolyte-supported & hydrogen electrode-supported electrolysis cells</topic><topic>Factory assembly & integration</topic><topic>high temperature electrolysis</topic><topic>hydrogen</topic><topic>Levelized cost of hydrogen (LCOH)</topic><topic>Modular design & fabrication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prosser, Jacob H.</creatorcontrib><creatorcontrib>James, Brian D.</creatorcontrib><creatorcontrib>Murphy, Brian M.</creatorcontrib><creatorcontrib>Wendt, Daniel S.</creatorcontrib><creatorcontrib>Casteel, Micah J.</creatorcontrib><creatorcontrib>Westover, Tyler L.</creatorcontrib><creatorcontrib>Knighton, L. Todd</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prosser, Jacob H.</au><au>James, Brian D.</au><au>Murphy, Brian M.</au><au>Wendt, Daniel S.</au><au>Casteel, Micah J.</au><au>Westover, Tyler L.</au><au>Knighton, L. Todd</au><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>49</volume><issue>C</issue><issn>0360-3199</issn><abstract>In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to <$100/kWe DCSIP for >500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises >50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000292792433</orcidid><orcidid>https://orcid.org/0000000347280380</orcidid><orcidid>https://orcid.org/000000019884222X</orcidid><orcidid>https://orcid.org/0000000344914296</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2023-08, Vol.49 (C) |
issn | 0360-3199 |
language | eng |
recordid | cdi_osti_scitechconnect_2371551 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | 08 HYDROGEN Balance of plant (BOP) process equipment Design for manufacturing & assembly (DFMA) electrolysis Electrolyte-supported & hydrogen electrode-supported electrolysis cells Factory assembly & integration high temperature electrolysis hydrogen Levelized cost of hydrogen (LCOH) Modular design & fabrication |
title | Cost analysis of hydrogen production by high-temperature solid oxide electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%20analysis%20of%20hydrogen%20production%20by%20high-temperature%20solid%20oxide%20electrolysis&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Prosser,%20Jacob%20H.&rft.aucorp=Idaho%20National%20Laboratory%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2023-08-22&rft.volume=49&rft.issue=C&rft.issn=0360-3199&rft_id=info:doi/&rft_dat=%3Costi%3E2371551%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |