Cost analysis of hydrogen production by high-temperature solid oxide electrolysis

In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of hydrogen energy 2023-08, Vol.49 (C)
Hauptverfasser: Prosser, Jacob H., James, Brian D., Murphy, Brian M., Wendt, Daniel S., Casteel, Micah J., Westover, Tyler L., Knighton, L. Todd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page
container_title International journal of hydrogen energy
container_volume 49
creator Prosser, Jacob H.
James, Brian D.
Murphy, Brian M.
Wendt, Daniel S.
Casteel, Micah J.
Westover, Tyler L.
Knighton, L. Todd
description In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to 500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises >50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2371551</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2371551</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23715513</originalsourceid><addsrcrecordid>eNqNjb0KwjAURjMoWH_e4eJeSIy1dC6Kq-BeanLbRGJuSVKwb28RH8DpW84534JlXJ54LkVVrdg6xifnouTHKmO3mmKC1rduijYCdWAmHahHD0MgPapkycNjAmN7kyd8DRjaNAaESM5qoLfVCOhQpUDfxpYtu9ZF3P12w_aX872-5vORbaKyCZVR5P2sNAdZiqIQ8i_oA0BKP8s</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Prosser, Jacob H. ; James, Brian D. ; Murphy, Brian M. ; Wendt, Daniel S. ; Casteel, Micah J. ; Westover, Tyler L. ; Knighton, L. Todd</creator><creatorcontrib>Prosser, Jacob H. ; James, Brian D. ; Murphy, Brian M. ; Wendt, Daniel S. ; Casteel, Micah J. ; Westover, Tyler L. ; Knighton, L. Todd ; Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><description>In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to &lt;$100/kWe DCSIP for &gt;500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises &gt;50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.</description><identifier>ISSN: 0360-3199</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>08 HYDROGEN ; Balance of plant (BOP) process equipment ; Design for manufacturing &amp; assembly (DFMA) ; electrolysis ; Electrolyte-supported &amp; hydrogen electrode-supported electrolysis cells ; Factory assembly &amp; integration ; high temperature electrolysis ; hydrogen ; Levelized cost of hydrogen (LCOH) ; Modular design &amp; fabrication</subject><ispartof>International journal of hydrogen energy, 2023-08, Vol.49 (C)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000292792433 ; 0000000347280380 ; 000000019884222X ; 0000000344914296</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2371551$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Prosser, Jacob H.</creatorcontrib><creatorcontrib>James, Brian D.</creatorcontrib><creatorcontrib>Murphy, Brian M.</creatorcontrib><creatorcontrib>Wendt, Daniel S.</creatorcontrib><creatorcontrib>Casteel, Micah J.</creatorcontrib><creatorcontrib>Westover, Tyler L.</creatorcontrib><creatorcontrib>Knighton, L. Todd</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><title>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</title><title>International journal of hydrogen energy</title><description>In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to &lt;$100/kWe DCSIP for &gt;500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises &gt;50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.</description><subject>08 HYDROGEN</subject><subject>Balance of plant (BOP) process equipment</subject><subject>Design for manufacturing &amp; assembly (DFMA)</subject><subject>electrolysis</subject><subject>Electrolyte-supported &amp; hydrogen electrode-supported electrolysis cells</subject><subject>Factory assembly &amp; integration</subject><subject>high temperature electrolysis</subject><subject>hydrogen</subject><subject>Levelized cost of hydrogen (LCOH)</subject><subject>Modular design &amp; fabrication</subject><issn>0360-3199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNjb0KwjAURjMoWH_e4eJeSIy1dC6Kq-BeanLbRGJuSVKwb28RH8DpW84534JlXJ54LkVVrdg6xifnouTHKmO3mmKC1rduijYCdWAmHahHD0MgPapkycNjAmN7kyd8DRjaNAaESM5qoLfVCOhQpUDfxpYtu9ZF3P12w_aX872-5vORbaKyCZVR5P2sNAdZiqIQ8i_oA0BKP8s</recordid><startdate>20230822</startdate><enddate>20230822</enddate><creator>Prosser, Jacob H.</creator><creator>James, Brian D.</creator><creator>Murphy, Brian M.</creator><creator>Wendt, Daniel S.</creator><creator>Casteel, Micah J.</creator><creator>Westover, Tyler L.</creator><creator>Knighton, L. Todd</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000292792433</orcidid><orcidid>https://orcid.org/0000000347280380</orcidid><orcidid>https://orcid.org/000000019884222X</orcidid><orcidid>https://orcid.org/0000000344914296</orcidid></search><sort><creationdate>20230822</creationdate><title>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</title><author>Prosser, Jacob H. ; James, Brian D. ; Murphy, Brian M. ; Wendt, Daniel S. ; Casteel, Micah J. ; Westover, Tyler L. ; Knighton, L. Todd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23715513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>08 HYDROGEN</topic><topic>Balance of plant (BOP) process equipment</topic><topic>Design for manufacturing &amp; assembly (DFMA)</topic><topic>electrolysis</topic><topic>Electrolyte-supported &amp; hydrogen electrode-supported electrolysis cells</topic><topic>Factory assembly &amp; integration</topic><topic>high temperature electrolysis</topic><topic>hydrogen</topic><topic>Levelized cost of hydrogen (LCOH)</topic><topic>Modular design &amp; fabrication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prosser, Jacob H.</creatorcontrib><creatorcontrib>James, Brian D.</creatorcontrib><creatorcontrib>Murphy, Brian M.</creatorcontrib><creatorcontrib>Wendt, Daniel S.</creatorcontrib><creatorcontrib>Casteel, Micah J.</creatorcontrib><creatorcontrib>Westover, Tyler L.</creatorcontrib><creatorcontrib>Knighton, L. Todd</creatorcontrib><creatorcontrib>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prosser, Jacob H.</au><au>James, Brian D.</au><au>Murphy, Brian M.</au><au>Wendt, Daniel S.</au><au>Casteel, Micah J.</au><au>Westover, Tyler L.</au><au>Knighton, L. Todd</au><aucorp>Idaho National Laboratory (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost analysis of hydrogen production by high-temperature solid oxide electrolysis</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2023-08-22</date><risdate>2023</risdate><volume>49</volume><issue>C</issue><issn>0360-3199</issn><abstract>In this study, we estimate construction and operation costs of gigawatt-scale solid oxide electrolysis (SOE) facilities for producing high purity hydrogen gas from water. Manufacturing and assembly costs for two types of SOE cell stacks are estimated using a detailed design for manufacture and assembly (DFMA®) analysis. Modular balance of plant (BOP) process equipment is designed and sized with Aspen®, and cost estimated using equipment vendor quotes. Factory and on-site assembly and installation costs for SOEC stack and BOP equipment integration into modular SOE process units are calculated using a simplified DFMA® method. Total stack costs on a stack input power (SIP) basis reduce to &lt;$100/kWe DCSIP for &gt;500 MWe DCSIP/year production rates with electrode cermet, interconnects, and high-temperature heat treatments dominating the total cost. Integration of stacks with larger BOP equipment operating at higher pressures offers ~36% cost reduction in total facility capital cost due to an economies of physical scale effect since BOP equipment comprises &gt;50% of facility costs. Optimized H2 prices decrease from ~$\$$4/kgH2 to ~$\$$2/kgH2 for 1 GWe DCSIP facilities using $\$$0.025/kWh electricity price. All costs are reported in 2021 US dollars.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000292792433</orcidid><orcidid>https://orcid.org/0000000347280380</orcidid><orcidid>https://orcid.org/000000019884222X</orcidid><orcidid>https://orcid.org/0000000344914296</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2023-08, Vol.49 (C)
issn 0360-3199
language eng
recordid cdi_osti_scitechconnect_2371551
source ScienceDirect Journals (5 years ago - present)
subjects 08 HYDROGEN
Balance of plant (BOP) process equipment
Design for manufacturing & assembly (DFMA)
electrolysis
Electrolyte-supported & hydrogen electrode-supported electrolysis cells
Factory assembly & integration
high temperature electrolysis
hydrogen
Levelized cost of hydrogen (LCOH)
Modular design & fabrication
title Cost analysis of hydrogen production by high-temperature solid oxide electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A31%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%20analysis%20of%20hydrogen%20production%20by%20high-temperature%20solid%20oxide%20electrolysis&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Prosser,%20Jacob%20H.&rft.aucorp=Idaho%20National%20Laboratory%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2023-08-22&rft.volume=49&rft.issue=C&rft.issn=0360-3199&rft_id=info:doi/&rft_dat=%3Costi%3E2371551%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true