Antiferroelectric Ceramics for Energy‐Efficient Capacitors by Theory‐Guided Discovery

Antiferroelectric ceramics, via the electric‐field‐induced antiferroelectric (AFE)–ferroelectric (FE) phase transitions, show great promise for high‐energy‐density capacitors. Yet, currently, only 70–80% energy release is found during a charge–discharge cycle. Here, for PbZrO3‐based oxides, geometri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-08, Vol.36 (31), p.e2312856-n/a
Hauptverfasser: Gaur, Anand P. S., Choudhary, Renu, Liu, Binzhi, Mudryk, Yaroslav, Johnson, Duane D., Cui, Jun, Tan, Xiaoli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page e2312856
container_title Advanced materials (Weinheim)
container_volume 36
creator Gaur, Anand P. S.
Choudhary, Renu
Liu, Binzhi
Mudryk, Yaroslav
Johnson, Duane D.
Cui, Jun
Tan, Xiaoli
description Antiferroelectric ceramics, via the electric‐field‐induced antiferroelectric (AFE)–ferroelectric (FE) phase transitions, show great promise for high‐energy‐density capacitors. Yet, currently, only 70–80% energy release is found during a charge–discharge cycle. Here, for PbZrO3‐based oxides, geometric nonlinear theory of martensitic phase transitions is applied (first used to guide supercompatible shape‐memory alloys) to predict the reversibility of the AFE–FE transition by using density‐functional theory to assess AFE/FE interfacial lattice‐mismatch strain that assures ultralow electric hysteresis and extended fatigue lifetime. A good correlation of mismatch strain with electric hysteresis, hence, with energy efficiency of AFE capacitors is observed. Guided by theory, high‐throughput material search is conducted and AFE compositions with a near‐perfect charge–discharge energy efficiency (98.2%), i.e., near‐zero hysteresis are discovered. And the fatigue life of the capacitor reaches 79.5 million charge–discharge cycles, a factor of 80 enhancement over AFE ceramics with large electric hysteresis. A near‐perfect charge–discharge energy efficiency, 98.2%, is observed in a PbZrO3‐based antiferroelectric ceramic. The compositions with such compatible antiferroelectric–ferroelectric phase transitions are discovered by theory‐guided high‐throughput synthesis. The almost eliminated electric hysteresis is a result of minimized lattice mismatch strain at the interface during phase transition. The highly energy‐efficient capacitor also exhibits 80 times enhancement in service lifetime.
doi_str_mv 10.1002/adma.202312856
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2370310</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3086804206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2856-96d29d6ccd810feb7d67ee6ba1307d231f1547ca9afa57477bc4b4cff289c843</originalsourceid><addsrcrecordid>eNqF0b1uFDEUBWALEZEl0FKiETQ0u_hvbE-52mwCUqI021BZHvuaOJoZL_ZM0HQ8As-YJ8GrDUFKQ-Xm89G5Ogi9I3hFMKafjevNimLKCFW1eIEWpKZkyXFTv0QL3LB62QiuTtHrnO8wxo3A4hU6ZUrKWtRigb6thzF4SClCB3ZMwVYbSKYPNlc-pmo7QPo-P_z6vfU-2ADDWG3M3tgwxpSrdq52txDTAVxOwYGrzkO28R7S_AadeNNlePv4nqHdxXa3-bK8urn8ullfLe2hcannaOOEtU4R7KGVTkgA0RrCsHTlLk9qLq1pjDe15FK2lrfcek9VYxVnZ-jDMTbmMehcioG9tXEYyjWaMokZwQV9OqJ9ij8myKPuS03oOjNAnLJmuFaCCU5UoR-f0bs4paFcUJQSCnOKRVGro7Ip5pzA630KvUmzJlgfhtGHYfTTMOXD-8fYqe3BPfG_SxTQHMHP0MH8nzi9Pr9e_wv_AwFOm8E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3086804206</pqid></control><display><type>article</type><title>Antiferroelectric Ceramics for Energy‐Efficient Capacitors by Theory‐Guided Discovery</title><source>Wiley Online Library All Journals</source><creator>Gaur, Anand P. S. ; Choudhary, Renu ; Liu, Binzhi ; Mudryk, Yaroslav ; Johnson, Duane D. ; Cui, Jun ; Tan, Xiaoli</creator><creatorcontrib>Gaur, Anand P. S. ; Choudhary, Renu ; Liu, Binzhi ; Mudryk, Yaroslav ; Johnson, Duane D. ; Cui, Jun ; Tan, Xiaoli ; Iowa State Univ., Ames, IA (United States)</creatorcontrib><description>Antiferroelectric ceramics, via the electric‐field‐induced antiferroelectric (AFE)–ferroelectric (FE) phase transitions, show great promise for high‐energy‐density capacitors. Yet, currently, only 70–80% energy release is found during a charge–discharge cycle. Here, for PbZrO3‐based oxides, geometric nonlinear theory of martensitic phase transitions is applied (first used to guide supercompatible shape‐memory alloys) to predict the reversibility of the AFE–FE transition by using density‐functional theory to assess AFE/FE interfacial lattice‐mismatch strain that assures ultralow electric hysteresis and extended fatigue lifetime. A good correlation of mismatch strain with electric hysteresis, hence, with energy efficiency of AFE capacitors is observed. Guided by theory, high‐throughput material search is conducted and AFE compositions with a near‐perfect charge–discharge energy efficiency (98.2%), i.e., near‐zero hysteresis are discovered. And the fatigue life of the capacitor reaches 79.5 million charge–discharge cycles, a factor of 80 enhancement over AFE ceramics with large electric hysteresis. A near‐perfect charge–discharge energy efficiency, 98.2%, is observed in a PbZrO3‐based antiferroelectric ceramic. The compositions with such compatible antiferroelectric–ferroelectric phase transitions are discovered by theory‐guided high‐throughput synthesis. The almost eliminated electric hysteresis is a result of minimized lattice mismatch strain at the interface during phase transition. The highly energy‐efficient capacitor also exhibits 80 times enhancement in service lifetime.</description><identifier>ISSN: 0935-9648</identifier><identifier>ISSN: 1521-4095</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202312856</identifier><identifier>PMID: 38775656</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>antiferroelectric – ferroelectric phase transition ; Antiferroelectricity ; Capacitors ; Ceramics ; Charge efficiency ; Charge materials ; Density functional theory ; Discharge ; electric hysteresis ; energy efficiency ; Fatigue life ; geometric nonlinear theory of martensite ; Hysteresis ; lattice-mismatch strain ; Martensitic transformations ; MATERIALS SCIENCE ; PbZrO3-based oxides ; Phase transitions ; Shape memory alloys</subject><ispartof>Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2312856-n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2024 Wiley‐VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2856-96d29d6ccd810feb7d67ee6ba1307d231f1547ca9afa57477bc4b4cff289c843</cites><orcidid>0000-0001-7911-8172 ; 0000-0003-2658-0413 ; 0000-0003-0794-7283 ; 0000-0002-4182-663X ; 0000-0001-9340-4802 ; 0000-0001-8293-3346 ; 0000000182933346 ; 0000000326580413 ; 0000000307947283 ; 000000024182663X ; 0000000193404802 ; 0000000179118172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202312856$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202312856$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38775656$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2370310$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaur, Anand P. S.</creatorcontrib><creatorcontrib>Choudhary, Renu</creatorcontrib><creatorcontrib>Liu, Binzhi</creatorcontrib><creatorcontrib>Mudryk, Yaroslav</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Tan, Xiaoli</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><title>Antiferroelectric Ceramics for Energy‐Efficient Capacitors by Theory‐Guided Discovery</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Antiferroelectric ceramics, via the electric‐field‐induced antiferroelectric (AFE)–ferroelectric (FE) phase transitions, show great promise for high‐energy‐density capacitors. Yet, currently, only 70–80% energy release is found during a charge–discharge cycle. Here, for PbZrO3‐based oxides, geometric nonlinear theory of martensitic phase transitions is applied (first used to guide supercompatible shape‐memory alloys) to predict the reversibility of the AFE–FE transition by using density‐functional theory to assess AFE/FE interfacial lattice‐mismatch strain that assures ultralow electric hysteresis and extended fatigue lifetime. A good correlation of mismatch strain with electric hysteresis, hence, with energy efficiency of AFE capacitors is observed. Guided by theory, high‐throughput material search is conducted and AFE compositions with a near‐perfect charge–discharge energy efficiency (98.2%), i.e., near‐zero hysteresis are discovered. And the fatigue life of the capacitor reaches 79.5 million charge–discharge cycles, a factor of 80 enhancement over AFE ceramics with large electric hysteresis. A near‐perfect charge–discharge energy efficiency, 98.2%, is observed in a PbZrO3‐based antiferroelectric ceramic. The compositions with such compatible antiferroelectric–ferroelectric phase transitions are discovered by theory‐guided high‐throughput synthesis. The almost eliminated electric hysteresis is a result of minimized lattice mismatch strain at the interface during phase transition. The highly energy‐efficient capacitor also exhibits 80 times enhancement in service lifetime.</description><subject>antiferroelectric – ferroelectric phase transition</subject><subject>Antiferroelectricity</subject><subject>Capacitors</subject><subject>Ceramics</subject><subject>Charge efficiency</subject><subject>Charge materials</subject><subject>Density functional theory</subject><subject>Discharge</subject><subject>electric hysteresis</subject><subject>energy efficiency</subject><subject>Fatigue life</subject><subject>geometric nonlinear theory of martensite</subject><subject>Hysteresis</subject><subject>lattice-mismatch strain</subject><subject>Martensitic transformations</subject><subject>MATERIALS SCIENCE</subject><subject>PbZrO3-based oxides</subject><subject>Phase transitions</subject><subject>Shape memory alloys</subject><issn>0935-9648</issn><issn>1521-4095</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqF0b1uFDEUBWALEZEl0FKiETQ0u_hvbE-52mwCUqI021BZHvuaOJoZL_ZM0HQ8As-YJ8GrDUFKQ-Xm89G5Ogi9I3hFMKafjevNimLKCFW1eIEWpKZkyXFTv0QL3LB62QiuTtHrnO8wxo3A4hU6ZUrKWtRigb6thzF4SClCB3ZMwVYbSKYPNlc-pmo7QPo-P_z6vfU-2ADDWG3M3tgwxpSrdq52txDTAVxOwYGrzkO28R7S_AadeNNlePv4nqHdxXa3-bK8urn8ullfLe2hcannaOOEtU4R7KGVTkgA0RrCsHTlLk9qLq1pjDe15FK2lrfcek9VYxVnZ-jDMTbmMehcioG9tXEYyjWaMokZwQV9OqJ9ij8myKPuS03oOjNAnLJmuFaCCU5UoR-f0bs4paFcUJQSCnOKRVGro7Ip5pzA630KvUmzJlgfhtGHYfTTMOXD-8fYqe3BPfG_SxTQHMHP0MH8nzi9Pr9e_wv_AwFOm8E</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Gaur, Anand P. S.</creator><creator>Choudhary, Renu</creator><creator>Liu, Binzhi</creator><creator>Mudryk, Yaroslav</creator><creator>Johnson, Duane D.</creator><creator>Cui, Jun</creator><creator>Tan, Xiaoli</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7911-8172</orcidid><orcidid>https://orcid.org/0000-0003-2658-0413</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0002-4182-663X</orcidid><orcidid>https://orcid.org/0000-0001-9340-4802</orcidid><orcidid>https://orcid.org/0000-0001-8293-3346</orcidid><orcidid>https://orcid.org/0000000182933346</orcidid><orcidid>https://orcid.org/0000000326580413</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><orcidid>https://orcid.org/000000024182663X</orcidid><orcidid>https://orcid.org/0000000193404802</orcidid><orcidid>https://orcid.org/0000000179118172</orcidid></search><sort><creationdate>20240801</creationdate><title>Antiferroelectric Ceramics for Energy‐Efficient Capacitors by Theory‐Guided Discovery</title><author>Gaur, Anand P. S. ; Choudhary, Renu ; Liu, Binzhi ; Mudryk, Yaroslav ; Johnson, Duane D. ; Cui, Jun ; Tan, Xiaoli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2856-96d29d6ccd810feb7d67ee6ba1307d231f1547ca9afa57477bc4b4cff289c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>antiferroelectric – ferroelectric phase transition</topic><topic>Antiferroelectricity</topic><topic>Capacitors</topic><topic>Ceramics</topic><topic>Charge efficiency</topic><topic>Charge materials</topic><topic>Density functional theory</topic><topic>Discharge</topic><topic>electric hysteresis</topic><topic>energy efficiency</topic><topic>Fatigue life</topic><topic>geometric nonlinear theory of martensite</topic><topic>Hysteresis</topic><topic>lattice-mismatch strain</topic><topic>Martensitic transformations</topic><topic>MATERIALS SCIENCE</topic><topic>PbZrO3-based oxides</topic><topic>Phase transitions</topic><topic>Shape memory alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaur, Anand P. S.</creatorcontrib><creatorcontrib>Choudhary, Renu</creatorcontrib><creatorcontrib>Liu, Binzhi</creatorcontrib><creatorcontrib>Mudryk, Yaroslav</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Tan, Xiaoli</creatorcontrib><creatorcontrib>Iowa State Univ., Ames, IA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaur, Anand P. S.</au><au>Choudhary, Renu</au><au>Liu, Binzhi</au><au>Mudryk, Yaroslav</au><au>Johnson, Duane D.</au><au>Cui, Jun</au><au>Tan, Xiaoli</au><aucorp>Iowa State Univ., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Antiferroelectric Ceramics for Energy‐Efficient Capacitors by Theory‐Guided Discovery</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2024-08-01</date><risdate>2024</risdate><volume>36</volume><issue>31</issue><spage>e2312856</spage><epage>n/a</epage><pages>e2312856-n/a</pages><issn>0935-9648</issn><issn>1521-4095</issn><eissn>1521-4095</eissn><abstract>Antiferroelectric ceramics, via the electric‐field‐induced antiferroelectric (AFE)–ferroelectric (FE) phase transitions, show great promise for high‐energy‐density capacitors. Yet, currently, only 70–80% energy release is found during a charge–discharge cycle. Here, for PbZrO3‐based oxides, geometric nonlinear theory of martensitic phase transitions is applied (first used to guide supercompatible shape‐memory alloys) to predict the reversibility of the AFE–FE transition by using density‐functional theory to assess AFE/FE interfacial lattice‐mismatch strain that assures ultralow electric hysteresis and extended fatigue lifetime. A good correlation of mismatch strain with electric hysteresis, hence, with energy efficiency of AFE capacitors is observed. Guided by theory, high‐throughput material search is conducted and AFE compositions with a near‐perfect charge–discharge energy efficiency (98.2%), i.e., near‐zero hysteresis are discovered. And the fatigue life of the capacitor reaches 79.5 million charge–discharge cycles, a factor of 80 enhancement over AFE ceramics with large electric hysteresis. A near‐perfect charge–discharge energy efficiency, 98.2%, is observed in a PbZrO3‐based antiferroelectric ceramic. The compositions with such compatible antiferroelectric–ferroelectric phase transitions are discovered by theory‐guided high‐throughput synthesis. The almost eliminated electric hysteresis is a result of minimized lattice mismatch strain at the interface during phase transition. The highly energy‐efficient capacitor also exhibits 80 times enhancement in service lifetime.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>38775656</pmid><doi>10.1002/adma.202312856</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7911-8172</orcidid><orcidid>https://orcid.org/0000-0003-2658-0413</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0002-4182-663X</orcidid><orcidid>https://orcid.org/0000-0001-9340-4802</orcidid><orcidid>https://orcid.org/0000-0001-8293-3346</orcidid><orcidid>https://orcid.org/0000000182933346</orcidid><orcidid>https://orcid.org/0000000326580413</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><orcidid>https://orcid.org/000000024182663X</orcidid><orcidid>https://orcid.org/0000000193404802</orcidid><orcidid>https://orcid.org/0000000179118172</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-08, Vol.36 (31), p.e2312856-n/a
issn 0935-9648
1521-4095
1521-4095
language eng
recordid cdi_osti_scitechconnect_2370310
source Wiley Online Library All Journals
subjects antiferroelectric – ferroelectric phase transition
Antiferroelectricity
Capacitors
Ceramics
Charge efficiency
Charge materials
Density functional theory
Discharge
electric hysteresis
energy efficiency
Fatigue life
geometric nonlinear theory of martensite
Hysteresis
lattice-mismatch strain
Martensitic transformations
MATERIALS SCIENCE
PbZrO3-based oxides
Phase transitions
Shape memory alloys
title Antiferroelectric Ceramics for Energy‐Efficient Capacitors by Theory‐Guided Discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T06%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Antiferroelectric%20Ceramics%20for%20Energy%E2%80%90Efficient%20Capacitors%20by%20Theory%E2%80%90Guided%20Discovery&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Gaur,%20Anand%20P.%20S.&rft.aucorp=Iowa%20State%20Univ.,%20Ames,%20IA%20(United%20States)&rft.date=2024-08-01&rft.volume=36&rft.issue=31&rft.spage=e2312856&rft.epage=n/a&rft.pages=e2312856-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202312856&rft_dat=%3Cproquest_osti_%3E3086804206%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3086804206&rft_id=info:pmid/38775656&rfr_iscdi=true