Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design
The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry letters 2023-11, Vol.14 (47), p.10561-10569 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10569 |
---|---|
container_issue | 47 |
container_start_page | 10561 |
container_title | The journal of physical chemistry letters |
container_volume | 14 |
creator | Hannagan, Ryan T. Lam, Ho Yi Réocreux, Romain Wang, Yicheng Dunbar, Andrew Lal, Vinita Çınar, Volkan Chen, Yunfan Deshlahra, Prashant Stamatakis, Michail Eagan, Nathaniel M. Sykes, E. Charles H. |
description | The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation. |
doi_str_mv | 10.1021/acs.jpclett.3c02551 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2369363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891754944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqXwBSwWE0uKHcdJPFalQKVKDC2z5ZiX4MqNg-1Wyt_jqh0Ynt4djq50D0KPlMwoyemL0mG2G7SFGGdMk5xzeoUmVBR1VtGaX__Lt-guhB0hpSB1NUHbVX-EEE2nouk7vBmMte4IHi978N2IVcAKv0LQ3gzRedym2yTSQjaPbo_nCR_xQkVlxxBPpOn6e3TTKhvg4fKn6OttuV18ZOvP99Vivs40IyJmtCF1S1RVVQSISqHmlVJcF00DUIJovqHlrVZlW2qmG6EVEFbmrGkrXhScsCl6Ove6tEAGbSLoH-36HnSUOSsFK1mCns_Q4N3vIW2VexM0WKt6cIcg81rQ1CeKIqHsjGrvQvDQysGbvfKjpESeRMskWl5Ey4to9gfRsXWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891754944</pqid></control><display><type>article</type><title>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</title><source>ACS Publications</source><creator>Hannagan, Ryan T. ; Lam, Ho Yi ; Réocreux, Romain ; Wang, Yicheng ; Dunbar, Andrew ; Lal, Vinita ; Çınar, Volkan ; Chen, Yunfan ; Deshlahra, Prashant ; Stamatakis, Michail ; Eagan, Nathaniel M. ; Sykes, E. Charles H.</creator><creatorcontrib>Hannagan, Ryan T. ; Lam, Ho Yi ; Réocreux, Romain ; Wang, Yicheng ; Dunbar, Andrew ; Lal, Vinita ; Çınar, Volkan ; Chen, Yunfan ; Deshlahra, Prashant ; Stamatakis, Michail ; Eagan, Nathaniel M. ; Sykes, E. Charles H. ; Tufts Univ., Medford, MA (United States)</creatorcontrib><description>The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c02551</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DFT ; heterogeneous catalysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nanoparticle ; single-atom alloy ; spillover ; surface science</subject><ispartof>The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10561-10569</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</citedby><cites>FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</cites><orcidid>0000-0002-9396-4903 ; 0000-0001-8338-8706 ; 0000-0002-1063-4379 ; 0000-0002-0224-2084 ; 0000-0001-5634-170X ; 0000-0002-0219-8941 ; 0000000183388706 ; 0000000202198941 ; 0000000202242084 ; 0000000293964903 ; 000000015634170X ; 0000000210634379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2751,27902,27903</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2369363$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannagan, Ryan T.</creatorcontrib><creatorcontrib>Lam, Ho Yi</creatorcontrib><creatorcontrib>Réocreux, Romain</creatorcontrib><creatorcontrib>Wang, Yicheng</creatorcontrib><creatorcontrib>Dunbar, Andrew</creatorcontrib><creatorcontrib>Lal, Vinita</creatorcontrib><creatorcontrib>Çınar, Volkan</creatorcontrib><creatorcontrib>Chen, Yunfan</creatorcontrib><creatorcontrib>Deshlahra, Prashant</creatorcontrib><creatorcontrib>Stamatakis, Michail</creatorcontrib><creatorcontrib>Eagan, Nathaniel M.</creatorcontrib><creatorcontrib>Sykes, E. Charles H.</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><title>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</title><title>The journal of physical chemistry letters</title><description>The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.</description><subject>DFT</subject><subject>heterogeneous catalysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nanoparticle</subject><subject>single-atom alloy</subject><subject>spillover</subject><subject>surface science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqXwBSwWE0uKHcdJPFalQKVKDC2z5ZiX4MqNg-1Wyt_jqh0Ynt4djq50D0KPlMwoyemL0mG2G7SFGGdMk5xzeoUmVBR1VtGaX__Lt-guhB0hpSB1NUHbVX-EEE2nouk7vBmMte4IHi978N2IVcAKv0LQ3gzRedym2yTSQjaPbo_nCR_xQkVlxxBPpOn6e3TTKhvg4fKn6OttuV18ZOvP99Vivs40IyJmtCF1S1RVVQSISqHmlVJcF00DUIJovqHlrVZlW2qmG6EVEFbmrGkrXhScsCl6Ove6tEAGbSLoH-36HnSUOSsFK1mCns_Q4N3vIW2VexM0WKt6cIcg81rQ1CeKIqHsjGrvQvDQysGbvfKjpESeRMskWl5Ey4to9gfRsXWc</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Hannagan, Ryan T.</creator><creator>Lam, Ho Yi</creator><creator>Réocreux, Romain</creator><creator>Wang, Yicheng</creator><creator>Dunbar, Andrew</creator><creator>Lal, Vinita</creator><creator>Çınar, Volkan</creator><creator>Chen, Yunfan</creator><creator>Deshlahra, Prashant</creator><creator>Stamatakis, Michail</creator><creator>Eagan, Nathaniel M.</creator><creator>Sykes, E. Charles H.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9396-4903</orcidid><orcidid>https://orcid.org/0000-0001-8338-8706</orcidid><orcidid>https://orcid.org/0000-0002-1063-4379</orcidid><orcidid>https://orcid.org/0000-0002-0224-2084</orcidid><orcidid>https://orcid.org/0000-0001-5634-170X</orcidid><orcidid>https://orcid.org/0000-0002-0219-8941</orcidid><orcidid>https://orcid.org/0000000183388706</orcidid><orcidid>https://orcid.org/0000000202198941</orcidid><orcidid>https://orcid.org/0000000202242084</orcidid><orcidid>https://orcid.org/0000000293964903</orcidid><orcidid>https://orcid.org/000000015634170X</orcidid><orcidid>https://orcid.org/0000000210634379</orcidid></search><sort><creationdate>20231130</creationdate><title>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</title><author>Hannagan, Ryan T. ; Lam, Ho Yi ; Réocreux, Romain ; Wang, Yicheng ; Dunbar, Andrew ; Lal, Vinita ; Çınar, Volkan ; Chen, Yunfan ; Deshlahra, Prashant ; Stamatakis, Michail ; Eagan, Nathaniel M. ; Sykes, E. Charles H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>DFT</topic><topic>heterogeneous catalysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nanoparticle</topic><topic>single-atom alloy</topic><topic>spillover</topic><topic>surface science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannagan, Ryan T.</creatorcontrib><creatorcontrib>Lam, Ho Yi</creatorcontrib><creatorcontrib>Réocreux, Romain</creatorcontrib><creatorcontrib>Wang, Yicheng</creatorcontrib><creatorcontrib>Dunbar, Andrew</creatorcontrib><creatorcontrib>Lal, Vinita</creatorcontrib><creatorcontrib>Çınar, Volkan</creatorcontrib><creatorcontrib>Chen, Yunfan</creatorcontrib><creatorcontrib>Deshlahra, Prashant</creatorcontrib><creatorcontrib>Stamatakis, Michail</creatorcontrib><creatorcontrib>Eagan, Nathaniel M.</creatorcontrib><creatorcontrib>Sykes, E. Charles H.</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannagan, Ryan T.</au><au>Lam, Ho Yi</au><au>Réocreux, Romain</au><au>Wang, Yicheng</au><au>Dunbar, Andrew</au><au>Lal, Vinita</au><au>Çınar, Volkan</au><au>Chen, Yunfan</au><au>Deshlahra, Prashant</au><au>Stamatakis, Michail</au><au>Eagan, Nathaniel M.</au><au>Sykes, E. Charles H.</au><aucorp>Tufts Univ., Medford, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>14</volume><issue>47</issue><spage>10561</spage><epage>10569</epage><pages>10561-10569</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.3c02551</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9396-4903</orcidid><orcidid>https://orcid.org/0000-0001-8338-8706</orcidid><orcidid>https://orcid.org/0000-0002-1063-4379</orcidid><orcidid>https://orcid.org/0000-0002-0224-2084</orcidid><orcidid>https://orcid.org/0000-0001-5634-170X</orcidid><orcidid>https://orcid.org/0000-0002-0219-8941</orcidid><orcidid>https://orcid.org/0000000183388706</orcidid><orcidid>https://orcid.org/0000000202198941</orcidid><orcidid>https://orcid.org/0000000202242084</orcidid><orcidid>https://orcid.org/0000000293964903</orcidid><orcidid>https://orcid.org/000000015634170X</orcidid><orcidid>https://orcid.org/0000000210634379</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1948-7185 |
ispartof | The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10561-10569 |
issn | 1948-7185 1948-7185 |
language | eng |
recordid | cdi_osti_scitechconnect_2369363 |
source | ACS Publications |
subjects | DFT heterogeneous catalysis INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY nanoparticle single-atom alloy spillover surface science |
title | Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Spillover%20Energy%20as%20a%20Descriptor%20for%20Single-Atom%20Alloy%20Catalyst%20Design&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Hannagan,%20Ryan%20T.&rft.aucorp=Tufts%20Univ.,%20Medford,%20MA%20(United%20States)&rft.date=2023-11-30&rft.volume=14&rft.issue=47&rft.spage=10561&rft.epage=10569&rft.pages=10561-10569&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c02551&rft_dat=%3Cproquest_osti_%3E2891754944%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891754944&rft_id=info:pmid/&rfr_iscdi=true |