Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design

The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2023-11, Vol.14 (47), p.10561-10569
Hauptverfasser: Hannagan, Ryan T., Lam, Ho Yi, Réocreux, Romain, Wang, Yicheng, Dunbar, Andrew, Lal, Vinita, Çınar, Volkan, Chen, Yunfan, Deshlahra, Prashant, Stamatakis, Michail, Eagan, Nathaniel M., Sykes, E. Charles H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10569
container_issue 47
container_start_page 10561
container_title The journal of physical chemistry letters
container_volume 14
creator Hannagan, Ryan T.
Lam, Ho Yi
Réocreux, Romain
Wang, Yicheng
Dunbar, Andrew
Lal, Vinita
Çınar, Volkan
Chen, Yunfan
Deshlahra, Prashant
Stamatakis, Michail
Eagan, Nathaniel M.
Sykes, E. Charles H.
description The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.
doi_str_mv 10.1021/acs.jpclett.3c02551
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2369363</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2891754944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqXwBSwWE0uKHcdJPFalQKVKDC2z5ZiX4MqNg-1Wyt_jqh0Ynt4djq50D0KPlMwoyemL0mG2G7SFGGdMk5xzeoUmVBR1VtGaX__Lt-guhB0hpSB1NUHbVX-EEE2nouk7vBmMte4IHi978N2IVcAKv0LQ3gzRedym2yTSQjaPbo_nCR_xQkVlxxBPpOn6e3TTKhvg4fKn6OttuV18ZOvP99Vivs40IyJmtCF1S1RVVQSISqHmlVJcF00DUIJovqHlrVZlW2qmG6EVEFbmrGkrXhScsCl6Ove6tEAGbSLoH-36HnSUOSsFK1mCns_Q4N3vIW2VexM0WKt6cIcg81rQ1CeKIqHsjGrvQvDQysGbvfKjpESeRMskWl5Ey4to9gfRsXWc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2891754944</pqid></control><display><type>article</type><title>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</title><source>ACS Publications</source><creator>Hannagan, Ryan T. ; Lam, Ho Yi ; Réocreux, Romain ; Wang, Yicheng ; Dunbar, Andrew ; Lal, Vinita ; Çınar, Volkan ; Chen, Yunfan ; Deshlahra, Prashant ; Stamatakis, Michail ; Eagan, Nathaniel M. ; Sykes, E. Charles H.</creator><creatorcontrib>Hannagan, Ryan T. ; Lam, Ho Yi ; Réocreux, Romain ; Wang, Yicheng ; Dunbar, Andrew ; Lal, Vinita ; Çınar, Volkan ; Chen, Yunfan ; Deshlahra, Prashant ; Stamatakis, Michail ; Eagan, Nathaniel M. ; Sykes, E. Charles H. ; Tufts Univ., Medford, MA (United States)</creatorcontrib><description>The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.3c02551</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>DFT ; heterogeneous catalysis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; nanoparticle ; single-atom alloy ; spillover ; surface science</subject><ispartof>The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10561-10569</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</citedby><cites>FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</cites><orcidid>0000-0002-9396-4903 ; 0000-0001-8338-8706 ; 0000-0002-1063-4379 ; 0000-0002-0224-2084 ; 0000-0001-5634-170X ; 0000-0002-0219-8941 ; 0000000183388706 ; 0000000202198941 ; 0000000202242084 ; 0000000293964903 ; 000000015634170X ; 0000000210634379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2751,27902,27903</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2369363$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hannagan, Ryan T.</creatorcontrib><creatorcontrib>Lam, Ho Yi</creatorcontrib><creatorcontrib>Réocreux, Romain</creatorcontrib><creatorcontrib>Wang, Yicheng</creatorcontrib><creatorcontrib>Dunbar, Andrew</creatorcontrib><creatorcontrib>Lal, Vinita</creatorcontrib><creatorcontrib>Çınar, Volkan</creatorcontrib><creatorcontrib>Chen, Yunfan</creatorcontrib><creatorcontrib>Deshlahra, Prashant</creatorcontrib><creatorcontrib>Stamatakis, Michail</creatorcontrib><creatorcontrib>Eagan, Nathaniel M.</creatorcontrib><creatorcontrib>Sykes, E. Charles H.</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><title>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</title><title>The journal of physical chemistry letters</title><description>The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.</description><subject>DFT</subject><subject>heterogeneous catalysis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>nanoparticle</subject><subject>single-atom alloy</subject><subject>spillover</subject><subject>surface science</subject><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqXwBSwWE0uKHcdJPFalQKVKDC2z5ZiX4MqNg-1Wyt_jqh0Ynt4djq50D0KPlMwoyemL0mG2G7SFGGdMk5xzeoUmVBR1VtGaX__Lt-guhB0hpSB1NUHbVX-EEE2nouk7vBmMte4IHi978N2IVcAKv0LQ3gzRedym2yTSQjaPbo_nCR_xQkVlxxBPpOn6e3TTKhvg4fKn6OttuV18ZOvP99Vivs40IyJmtCF1S1RVVQSISqHmlVJcF00DUIJovqHlrVZlW2qmG6EVEFbmrGkrXhScsCl6Ove6tEAGbSLoH-36HnSUOSsFK1mCns_Q4N3vIW2VexM0WKt6cIcg81rQ1CeKIqHsjGrvQvDQysGbvfKjpESeRMskWl5Ey4to9gfRsXWc</recordid><startdate>20231130</startdate><enddate>20231130</enddate><creator>Hannagan, Ryan T.</creator><creator>Lam, Ho Yi</creator><creator>Réocreux, Romain</creator><creator>Wang, Yicheng</creator><creator>Dunbar, Andrew</creator><creator>Lal, Vinita</creator><creator>Çınar, Volkan</creator><creator>Chen, Yunfan</creator><creator>Deshlahra, Prashant</creator><creator>Stamatakis, Michail</creator><creator>Eagan, Nathaniel M.</creator><creator>Sykes, E. Charles H.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9396-4903</orcidid><orcidid>https://orcid.org/0000-0001-8338-8706</orcidid><orcidid>https://orcid.org/0000-0002-1063-4379</orcidid><orcidid>https://orcid.org/0000-0002-0224-2084</orcidid><orcidid>https://orcid.org/0000-0001-5634-170X</orcidid><orcidid>https://orcid.org/0000-0002-0219-8941</orcidid><orcidid>https://orcid.org/0000000183388706</orcidid><orcidid>https://orcid.org/0000000202198941</orcidid><orcidid>https://orcid.org/0000000202242084</orcidid><orcidid>https://orcid.org/0000000293964903</orcidid><orcidid>https://orcid.org/000000015634170X</orcidid><orcidid>https://orcid.org/0000000210634379</orcidid></search><sort><creationdate>20231130</creationdate><title>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</title><author>Hannagan, Ryan T. ; Lam, Ho Yi ; Réocreux, Romain ; Wang, Yicheng ; Dunbar, Andrew ; Lal, Vinita ; Çınar, Volkan ; Chen, Yunfan ; Deshlahra, Prashant ; Stamatakis, Michail ; Eagan, Nathaniel M. ; Sykes, E. Charles H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-1b08f0a7770e0a0a7857aa5c4bbee6e9bdef5fca6f6c3cb9cae03623bf7544503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>DFT</topic><topic>heterogeneous catalysis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>nanoparticle</topic><topic>single-atom alloy</topic><topic>spillover</topic><topic>surface science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hannagan, Ryan T.</creatorcontrib><creatorcontrib>Lam, Ho Yi</creatorcontrib><creatorcontrib>Réocreux, Romain</creatorcontrib><creatorcontrib>Wang, Yicheng</creatorcontrib><creatorcontrib>Dunbar, Andrew</creatorcontrib><creatorcontrib>Lal, Vinita</creatorcontrib><creatorcontrib>Çınar, Volkan</creatorcontrib><creatorcontrib>Chen, Yunfan</creatorcontrib><creatorcontrib>Deshlahra, Prashant</creatorcontrib><creatorcontrib>Stamatakis, Michail</creatorcontrib><creatorcontrib>Eagan, Nathaniel M.</creatorcontrib><creatorcontrib>Sykes, E. Charles H.</creatorcontrib><creatorcontrib>Tufts Univ., Medford, MA (United States)</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hannagan, Ryan T.</au><au>Lam, Ho Yi</au><au>Réocreux, Romain</au><au>Wang, Yicheng</au><au>Dunbar, Andrew</au><au>Lal, Vinita</au><au>Çınar, Volkan</au><au>Chen, Yunfan</au><au>Deshlahra, Prashant</au><au>Stamatakis, Michail</au><au>Eagan, Nathaniel M.</au><au>Sykes, E. Charles H.</au><aucorp>Tufts Univ., Medford, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design</atitle><jtitle>The journal of physical chemistry letters</jtitle><date>2023-11-30</date><risdate>2023</risdate><volume>14</volume><issue>47</issue><spage>10561</spage><epage>10569</epage><pages>10561-10569</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpclett.3c02551</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9396-4903</orcidid><orcidid>https://orcid.org/0000-0001-8338-8706</orcidid><orcidid>https://orcid.org/0000-0002-1063-4379</orcidid><orcidid>https://orcid.org/0000-0002-0224-2084</orcidid><orcidid>https://orcid.org/0000-0001-5634-170X</orcidid><orcidid>https://orcid.org/0000-0002-0219-8941</orcidid><orcidid>https://orcid.org/0000000183388706</orcidid><orcidid>https://orcid.org/0000000202198941</orcidid><orcidid>https://orcid.org/0000000202242084</orcidid><orcidid>https://orcid.org/0000000293964903</orcidid><orcidid>https://orcid.org/000000015634170X</orcidid><orcidid>https://orcid.org/0000000210634379</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2023-11, Vol.14 (47), p.10561-10569
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_2369363
source ACS Publications
subjects DFT
heterogeneous catalysis
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
nanoparticle
single-atom alloy
spillover
surface science
title Investigating Spillover Energy as a Descriptor for Single-Atom Alloy Catalyst Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A46%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20Spillover%20Energy%20as%20a%20Descriptor%20for%20Single-Atom%20Alloy%20Catalyst%20Design&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Hannagan,%20Ryan%20T.&rft.aucorp=Tufts%20Univ.,%20Medford,%20MA%20(United%20States)&rft.date=2023-11-30&rft.volume=14&rft.issue=47&rft.spage=10561&rft.epage=10569&rft.pages=10561-10569&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.3c02551&rft_dat=%3Cproquest_osti_%3E2891754944%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2891754944&rft_id=info:pmid/&rfr_iscdi=true