Reactive direct air capture of CO2 to C–C coupled products using multifunctional materials

Current direct air capture (DAC) approaches require a significant amount of energy for heating CO2-sorbed materials for regeneration and for compressing CO2 for transportation purposes. Rationally designing materials offering both capture and conversion functionalities could enable more energy and c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2024-07, Vol.26 (14), p.8242-8255
Hauptverfasser: Satter, Shazia Sharmin, Johnny Saavedra Lopez, Hubbard, Michael L, Jiang, Yuan, Dagle, Robert A, Kothandaraman, Jotheeswari
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8255
container_issue 14
container_start_page 8242
container_title Green chemistry : an international journal and green chemistry resource : GC
container_volume 26
creator Satter, Shazia Sharmin
Johnny Saavedra Lopez
Hubbard, Michael L
Jiang, Yuan
Dagle, Robert A
Kothandaraman, Jotheeswari
description Current direct air capture (DAC) approaches require a significant amount of energy for heating CO2-sorbed materials for regeneration and for compressing CO2 for transportation purposes. Rationally designing materials offering both capture and conversion functionalities could enable more energy and cost-efficient DAC and conversion. We have developed a single sorbent-catalytic (non-noble metal) material for the Integrated Direct Air Capture and CATalytic (iDAC-CAT) conversion of captured CO2 into value-added products. Solid sorbents are integrated with catalytic components to first capture CO2 from air. Subsequently, captured CO2, with renewable H2 co-feed is converted into olefins and paraffins. To the best of our knowledge, this is the first proof-of-concept demonstration for production of C2 products such as olefins from captured CO2. Among the different sorbent-catalytic materials studied, Fe/K2CO3/Al2O3 showed the best performance for integrated CO2 capture and conversion to C2 products. CO2 capture capacity of 8.2 wt% was achieved under optimized capture conditions at 25 °C, and a conversion of >70% to paraffins and olefins was achieved at 320–400 °C. The hydrogenation of captured CO2 was facilitated by the in situ formation of Fe3O4 and Fe5C2 species. The proximity between K and Fe was identified to be critical for producing C2 products from the captured CO2. The preliminary technoeconomic and life-cycle assessments suggest that the cost of the DAC can be considerably decreased by adopting the suggested iDAC-CAT technology, while renewable olefins could potentially be produced with negative greenhouse gases emissions.
doi_str_mv 10.1039/d4gc01244e
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2368599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3080249925</sourcerecordid><originalsourceid>FETCH-LOGICAL-o176t-7badf88e672dd79fee67e28d123b86a4d20e5f8bcfea53a337fadc065832436d3</originalsourceid><addsrcrecordid>eNo9j81KAzEYRYMoWKsbnyDoejR_k8ksZdAqFAqiO2FIky81ZTqpk8S17-Ab-iQGKq7uXVwO5yJ0SckNJby9tWJjCGVCwBGaUSF51bKGHP93yU7RWYxbQihtpJiht2fQJvlPwNZPYBLWfsJG71OeAAeHuxXDKeDu5-u7wybk_QAW76dgs0kR5-jHDd7lIXmXx8IJox7wTieYvB7iOTpxJeDiL-fo9eH-pXuslqvFU3e3rEKRSFWz1tYpBbJh1jatg9KAKUsZXyuphWUEaqfWxoGuuea8cdoaImvFmeDS8jm6OnBDTL6Pxicw7yaMYznUMy5V3bZldH0YFfuPDDH125Cn4ht7ThRhom1ZzX8BiFNiNA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3080249925</pqid></control><display><type>article</type><title>Reactive direct air capture of CO2 to C–C coupled products using multifunctional materials</title><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Satter, Shazia Sharmin ; Johnny Saavedra Lopez ; Hubbard, Michael L ; Jiang, Yuan ; Dagle, Robert A ; Kothandaraman, Jotheeswari</creator><creatorcontrib>Satter, Shazia Sharmin ; Johnny Saavedra Lopez ; Hubbard, Michael L ; Jiang, Yuan ; Dagle, Robert A ; Kothandaraman, Jotheeswari ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Current direct air capture (DAC) approaches require a significant amount of energy for heating CO2-sorbed materials for regeneration and for compressing CO2 for transportation purposes. Rationally designing materials offering both capture and conversion functionalities could enable more energy and cost-efficient DAC and conversion. We have developed a single sorbent-catalytic (non-noble metal) material for the Integrated Direct Air Capture and CATalytic (iDAC-CAT) conversion of captured CO2 into value-added products. Solid sorbents are integrated with catalytic components to first capture CO2 from air. Subsequently, captured CO2, with renewable H2 co-feed is converted into olefins and paraffins. To the best of our knowledge, this is the first proof-of-concept demonstration for production of C2 products such as olefins from captured CO2. Among the different sorbent-catalytic materials studied, Fe/K2CO3/Al2O3 showed the best performance for integrated CO2 capture and conversion to C2 products. CO2 capture capacity of 8.2 wt% was achieved under optimized capture conditions at 25 °C, and a conversion of &gt;70% to paraffins and olefins was achieved at 320–400 °C. The hydrogenation of captured CO2 was facilitated by the in situ formation of Fe3O4 and Fe5C2 species. The proximity between K and Fe was identified to be critical for producing C2 products from the captured CO2. The preliminary technoeconomic and life-cycle assessments suggest that the cost of the DAC can be considerably decreased by adopting the suggested iDAC-CAT technology, while renewable olefins could potentially be produced with negative greenhouse gases emissions.</description><identifier>ISSN: 1463-9262</identifier><identifier>EISSN: 1463-9270</identifier><identifier>DOI: 10.1039/d4gc01244e</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Alkenes ; Aluminum oxide ; Carbon dioxide ; Carbon sequestration ; Catalytic converters ; CO2 capture ; CO2 conversion ; Greenhouse gases ; Iron oxides ; Life cycle analysis ; Life cycle costs ; Multifunctional materials ; Noble metals ; olefins ; Paraffins ; Potassium carbonate ; Sorbents ; Technology assessment</subject><ispartof>Green chemistry : an international journal and green chemistry resource : GC, 2024-07, Vol.26 (14), p.8242-8255</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000163069468 ; 0000000274912702 ; 0000000275425826 ; 0000000282082163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2368599$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Satter, Shazia Sharmin</creatorcontrib><creatorcontrib>Johnny Saavedra Lopez</creatorcontrib><creatorcontrib>Hubbard, Michael L</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><creatorcontrib>Dagle, Robert A</creatorcontrib><creatorcontrib>Kothandaraman, Jotheeswari</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Reactive direct air capture of CO2 to C–C coupled products using multifunctional materials</title><title>Green chemistry : an international journal and green chemistry resource : GC</title><description>Current direct air capture (DAC) approaches require a significant amount of energy for heating CO2-sorbed materials for regeneration and for compressing CO2 for transportation purposes. Rationally designing materials offering both capture and conversion functionalities could enable more energy and cost-efficient DAC and conversion. We have developed a single sorbent-catalytic (non-noble metal) material for the Integrated Direct Air Capture and CATalytic (iDAC-CAT) conversion of captured CO2 into value-added products. Solid sorbents are integrated with catalytic components to first capture CO2 from air. Subsequently, captured CO2, with renewable H2 co-feed is converted into olefins and paraffins. To the best of our knowledge, this is the first proof-of-concept demonstration for production of C2 products such as olefins from captured CO2. Among the different sorbent-catalytic materials studied, Fe/K2CO3/Al2O3 showed the best performance for integrated CO2 capture and conversion to C2 products. CO2 capture capacity of 8.2 wt% was achieved under optimized capture conditions at 25 °C, and a conversion of &gt;70% to paraffins and olefins was achieved at 320–400 °C. The hydrogenation of captured CO2 was facilitated by the in situ formation of Fe3O4 and Fe5C2 species. The proximity between K and Fe was identified to be critical for producing C2 products from the captured CO2. The preliminary technoeconomic and life-cycle assessments suggest that the cost of the DAC can be considerably decreased by adopting the suggested iDAC-CAT technology, while renewable olefins could potentially be produced with negative greenhouse gases emissions.</description><subject>Alkenes</subject><subject>Aluminum oxide</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Catalytic converters</subject><subject>CO2 capture</subject><subject>CO2 conversion</subject><subject>Greenhouse gases</subject><subject>Iron oxides</subject><subject>Life cycle analysis</subject><subject>Life cycle costs</subject><subject>Multifunctional materials</subject><subject>Noble metals</subject><subject>olefins</subject><subject>Paraffins</subject><subject>Potassium carbonate</subject><subject>Sorbents</subject><subject>Technology assessment</subject><issn>1463-9262</issn><issn>1463-9270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j81KAzEYRYMoWKsbnyDoejR_k8ksZdAqFAqiO2FIky81ZTqpk8S17-Ab-iQGKq7uXVwO5yJ0SckNJby9tWJjCGVCwBGaUSF51bKGHP93yU7RWYxbQihtpJiht2fQJvlPwNZPYBLWfsJG71OeAAeHuxXDKeDu5-u7wybk_QAW76dgs0kR5-jHDd7lIXmXx8IJox7wTieYvB7iOTpxJeDiL-fo9eH-pXuslqvFU3e3rEKRSFWz1tYpBbJh1jatg9KAKUsZXyuphWUEaqfWxoGuuea8cdoaImvFmeDS8jm6OnBDTL6Pxicw7yaMYznUMy5V3bZldH0YFfuPDDH125Cn4ht7ThRhom1ZzX8BiFNiNA</recordid><startdate>20240715</startdate><enddate>20240715</enddate><creator>Satter, Shazia Sharmin</creator><creator>Johnny Saavedra Lopez</creator><creator>Hubbard, Michael L</creator><creator>Jiang, Yuan</creator><creator>Dagle, Robert A</creator><creator>Kothandaraman, Jotheeswari</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7ST</scope><scope>7U6</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000163069468</orcidid><orcidid>https://orcid.org/0000000274912702</orcidid><orcidid>https://orcid.org/0000000275425826</orcidid><orcidid>https://orcid.org/0000000282082163</orcidid></search><sort><creationdate>20240715</creationdate><title>Reactive direct air capture of CO2 to C–C coupled products using multifunctional materials</title><author>Satter, Shazia Sharmin ; Johnny Saavedra Lopez ; Hubbard, Michael L ; Jiang, Yuan ; Dagle, Robert A ; Kothandaraman, Jotheeswari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o176t-7badf88e672dd79fee67e28d123b86a4d20e5f8bcfea53a337fadc065832436d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Alkenes</topic><topic>Aluminum oxide</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Catalytic converters</topic><topic>CO2 capture</topic><topic>CO2 conversion</topic><topic>Greenhouse gases</topic><topic>Iron oxides</topic><topic>Life cycle analysis</topic><topic>Life cycle costs</topic><topic>Multifunctional materials</topic><topic>Noble metals</topic><topic>olefins</topic><topic>Paraffins</topic><topic>Potassium carbonate</topic><topic>Sorbents</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satter, Shazia Sharmin</creatorcontrib><creatorcontrib>Johnny Saavedra Lopez</creatorcontrib><creatorcontrib>Hubbard, Michael L</creatorcontrib><creatorcontrib>Jiang, Yuan</creatorcontrib><creatorcontrib>Dagle, Robert A</creatorcontrib><creatorcontrib>Kothandaraman, Jotheeswari</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satter, Shazia Sharmin</au><au>Johnny Saavedra Lopez</au><au>Hubbard, Michael L</au><au>Jiang, Yuan</au><au>Dagle, Robert A</au><au>Kothandaraman, Jotheeswari</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reactive direct air capture of CO2 to C–C coupled products using multifunctional materials</atitle><jtitle>Green chemistry : an international journal and green chemistry resource : GC</jtitle><date>2024-07-15</date><risdate>2024</risdate><volume>26</volume><issue>14</issue><spage>8242</spage><epage>8255</epage><pages>8242-8255</pages><issn>1463-9262</issn><eissn>1463-9270</eissn><abstract>Current direct air capture (DAC) approaches require a significant amount of energy for heating CO2-sorbed materials for regeneration and for compressing CO2 for transportation purposes. Rationally designing materials offering both capture and conversion functionalities could enable more energy and cost-efficient DAC and conversion. We have developed a single sorbent-catalytic (non-noble metal) material for the Integrated Direct Air Capture and CATalytic (iDAC-CAT) conversion of captured CO2 into value-added products. Solid sorbents are integrated with catalytic components to first capture CO2 from air. Subsequently, captured CO2, with renewable H2 co-feed is converted into olefins and paraffins. To the best of our knowledge, this is the first proof-of-concept demonstration for production of C2 products such as olefins from captured CO2. Among the different sorbent-catalytic materials studied, Fe/K2CO3/Al2O3 showed the best performance for integrated CO2 capture and conversion to C2 products. CO2 capture capacity of 8.2 wt% was achieved under optimized capture conditions at 25 °C, and a conversion of &gt;70% to paraffins and olefins was achieved at 320–400 °C. The hydrogenation of captured CO2 was facilitated by the in situ formation of Fe3O4 and Fe5C2 species. The proximity between K and Fe was identified to be critical for producing C2 products from the captured CO2. The preliminary technoeconomic and life-cycle assessments suggest that the cost of the DAC can be considerably decreased by adopting the suggested iDAC-CAT technology, while renewable olefins could potentially be produced with negative greenhouse gases emissions.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d4gc01244e</doi><tpages>14</tpages><orcidid>https://orcid.org/0000000163069468</orcidid><orcidid>https://orcid.org/0000000274912702</orcidid><orcidid>https://orcid.org/0000000275425826</orcidid><orcidid>https://orcid.org/0000000282082163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9262
ispartof Green chemistry : an international journal and green chemistry resource : GC, 2024-07, Vol.26 (14), p.8242-8255
issn 1463-9262
1463-9270
language eng
recordid cdi_osti_scitechconnect_2368599
source Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Alkenes
Aluminum oxide
Carbon dioxide
Carbon sequestration
Catalytic converters
CO2 capture
CO2 conversion
Greenhouse gases
Iron oxides
Life cycle analysis
Life cycle costs
Multifunctional materials
Noble metals
olefins
Paraffins
Potassium carbonate
Sorbents
Technology assessment
title Reactive direct air capture of CO2 to C–C coupled products using multifunctional materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A30%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reactive%20direct%20air%20capture%20of%20CO2%20to%20C%E2%80%93C%20coupled%20products%20using%20multifunctional%20materials&rft.jtitle=Green%20chemistry%20:%20an%20international%20journal%20and%20green%20chemistry%20resource%20:%20GC&rft.au=Satter,%20Shazia%20Sharmin&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-07-15&rft.volume=26&rft.issue=14&rft.spage=8242&rft.epage=8255&rft.pages=8242-8255&rft.issn=1463-9262&rft.eissn=1463-9270&rft_id=info:doi/10.1039/d4gc01244e&rft_dat=%3Cproquest_osti_%3E3080249925%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3080249925&rft_id=info:pmid/&rfr_iscdi=true