Phase Pattern Formation in Grain Boundaries
In this Letter we derive conditions that predict the existence of two-phase periodic-pattern grain boundary structures that are stable against coarsening. While previous research has established that elastic effects can lead to phase pattern formation on crystal surfaces, the possibility of stable g...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2024-05, Vol.132 (18), p.186204-186204, Article 186204 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this Letter we derive conditions that predict the existence of two-phase periodic-pattern grain boundary structures that are stable against coarsening. While previous research has established that elastic effects can lead to phase pattern formation on crystal surfaces, the possibility of stable grain boundary structures composed of alternating grain boundary phases has not been previously analyzed. Our theory identifies the specific combination of grain boundary and materials properties that enable the emergence of patterned grain boundary states and shows that the dislocation content of grain boundary phase junctions, absent in surface phenomena, weakens the stability of the patterned structures. The predictions of the theory are tested using a model copper grain boundary that exhibits multiple phases and two-phase pattern formation. We discuss how, similarly to surfaces, elastic effects associated with grain boundary phase junctions have profound implications for how grain boundary phases transform. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.132.186204 |