Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature
•Molecularly designed polymeric inhibitor effectively mitigates silica scaling in solution.•Background salts significantly diminish the efficiency of silica scaling inhibition.•MD simulations elucidate inhibition mechanisms in the presence of background salts.•MD simulations uncover the distinctive...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2024-07, Vol.258 (C), p.121705, Article 121705 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | C |
container_start_page | 121705 |
container_title | Water research (Oxford) |
container_volume | 258 |
creator | Kaneda, Masashi Cao, Tianchi Dong, Dengpan Zhang, Xiaowei Chen, Yinan Zhang, Junwei Bryantsev, Vyacheslav S. Zhong, Mingjiang Elimelech, Menachem |
description | •Molecularly designed polymeric inhibitor effectively mitigates silica scaling in solution.•Background salts significantly diminish the efficiency of silica scaling inhibition.•MD simulations elucidate inhibition mechanisms in the presence of background salts.•MD simulations uncover the distinctive role of divalent cations in inhibiting silica scaling.•The effectiveness of inhibitors significantly improves with increasing solution temperatures.
High concentrations of dissolved silica in saline industrial wastewaters and brines cause silica scale formation, significantly hampering the efficacy of diverse engineered systems. Applying functional polymers as scale inhibitors in process feedwater is a common strategy to mitigate silica scaling. However, feedwater characteristics often vary widely, depending on the specific processes, making the inhibition of silica scaling challenging and complex. In this study, we systematically investigate the role of ionic composition, specifically ionic strength and divalent ions, and solution temperature, in inhibiting silica scaling using molecularly designed amine/amide polymers. The inhibitor demonstrates effective stabilization of silicic acid, with inhibition efficiency of 74 and 55 % in the absence and presence of 20,000 ppm NaCl, respectively. However, further increasing the ionic strength of oversaturated silicic acid solutions significantly diminishes inhibition performance, rendering it ineffective at 180,000 ppm NaCl. Divalent inorganic cations exhibit a stronger impact on reducing inhibition efficiency compared to sodium ions. Molecular dynamics simulations reveal a competition mechanism between anionic silicic acid reactants (i.e., H3SiO4−) and chlorides for binding to ammonium groups within the polymeric inhibitor. Additionally, cations form clusters with H3SiO4− ions, hindering their stabilization with polymeric inhibitor. Notably, at elevated temperatures, the inhibitor achieves near-perfect inhibition for 500 ppm silicic acid solutions. This comprehensive assessment provides important insights into the effectiveness of silica scaling inhibitors under solution conditions relevant to real-world applications, addressing the challenges posed by varying solution parameters in diverse industrial processes.
[Display omitted] |
doi_str_mv | 10.1016/j.watres.2024.121705 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2352500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0043135424006067</els_id><sourcerecordid>3059259133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-22af814d37a28a54123089d108fbde8ef919cb4f1894866c00b13b91766c45903</originalsourceid><addsrcrecordid>eNp9kU9P3DAQxa2qVVmg36CqrJ44kK3_ZWNzqFQhoEhIlRCcLceZsF459mI7IL49iUI5cvLI83szT_MQ-k7JmhK6-bVbP5uSIK8ZYWJNGW1I_QmtqGxUxYSQn9GKEMErymtxgA5z3hFCGOPqKzrgsmk2jRArNFyHrWtdcTHg2OPsvLMGZ2u8Cw_42ZUt7sdg577xeB_9ywApn-Hb6GEWTP_O4jwZCQ9le4o792Q8hDI38ik2ocMFhj0kU8YEx-hLb3yGb2_vEbq_vLg7_1vd_Lu6Pv9zU1nOZakYM72kouONYdLUgjJOpOookX3bgYReUWVb0VOphNxsLCEt5a2izVSLWhF-hH4uc2MuTmfrCtitjSGALZrxmtVkhk4WaJ_i4wi56MFlC96bAHHMmpNasVpRzidULKhNMecEvd4nN5j0oinRcxp6p5c09JyGXtKYZD_eNoztAN276P_5J-D3AsB0jCcHafYKwULn0my1i-7jDa8sX5zn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059259133</pqid></control><display><type>article</type><title>Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Kaneda, Masashi ; Cao, Tianchi ; Dong, Dengpan ; Zhang, Xiaowei ; Chen, Yinan ; Zhang, Junwei ; Bryantsev, Vyacheslav S. ; Zhong, Mingjiang ; Elimelech, Menachem</creator><creatorcontrib>Kaneda, Masashi ; Cao, Tianchi ; Dong, Dengpan ; Zhang, Xiaowei ; Chen, Yinan ; Zhang, Junwei ; Bryantsev, Vyacheslav S. ; Zhong, Mingjiang ; Elimelech, Menachem</creatorcontrib><description>•Molecularly designed polymeric inhibitor effectively mitigates silica scaling in solution.•Background salts significantly diminish the efficiency of silica scaling inhibition.•MD simulations elucidate inhibition mechanisms in the presence of background salts.•MD simulations uncover the distinctive role of divalent cations in inhibiting silica scaling.•The effectiveness of inhibitors significantly improves with increasing solution temperatures.
High concentrations of dissolved silica in saline industrial wastewaters and brines cause silica scale formation, significantly hampering the efficacy of diverse engineered systems. Applying functional polymers as scale inhibitors in process feedwater is a common strategy to mitigate silica scaling. However, feedwater characteristics often vary widely, depending on the specific processes, making the inhibition of silica scaling challenging and complex. In this study, we systematically investigate the role of ionic composition, specifically ionic strength and divalent ions, and solution temperature, in inhibiting silica scaling using molecularly designed amine/amide polymers. The inhibitor demonstrates effective stabilization of silicic acid, with inhibition efficiency of 74 and 55 % in the absence and presence of 20,000 ppm NaCl, respectively. However, further increasing the ionic strength of oversaturated silicic acid solutions significantly diminishes inhibition performance, rendering it ineffective at 180,000 ppm NaCl. Divalent inorganic cations exhibit a stronger impact on reducing inhibition efficiency compared to sodium ions. Molecular dynamics simulations reveal a competition mechanism between anionic silicic acid reactants (i.e., H3SiO4−) and chlorides for binding to ammonium groups within the polymeric inhibitor. Additionally, cations form clusters with H3SiO4− ions, hindering their stabilization with polymeric inhibitor. Notably, at elevated temperatures, the inhibitor achieves near-perfect inhibition for 500 ppm silicic acid solutions. This comprehensive assessment provides important insights into the effectiveness of silica scaling inhibitors under solution conditions relevant to real-world applications, addressing the challenges posed by varying solution parameters in diverse industrial processes.
[Display omitted]</description><identifier>ISSN: 0043-1354</identifier><identifier>ISSN: 1879-2448</identifier><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.121705</identifier><identifier>PMID: 38776744</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Antiscalants ; Inhibitors ; Ions ; Molecular dynamics ; Molecular Dynamics Simulation ; Osmolar Concentration ; Polymers ; Polymers - chemistry ; Silica polymerization ; Silicic acid ; Silicon Dioxide - chemistry ; Temperature ; Wastewater - chemistry</subject><ispartof>Water research (Oxford), 2024-07, Vol.258 (C), p.121705, Article 121705</ispartof><rights>2024 Elsevier Ltd</rights><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c338t-22af814d37a28a54123089d108fbde8ef919cb4f1894866c00b13b91766c45903</cites><orcidid>0009-0008-7885-8871 ; 0000-0001-7533-4708 ; 0000-0003-0168-4996 ; 0009-0004-0205-7112 ; 0009-0002-8338-0872 ; 0009000283380872 ; 0000000301684996 ; 0000000175334708 ; 0009000878858871 ; 0009000402057112</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0043135424006067$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38776744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2352500$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaneda, Masashi</creatorcontrib><creatorcontrib>Cao, Tianchi</creatorcontrib><creatorcontrib>Dong, Dengpan</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Chen, Yinan</creatorcontrib><creatorcontrib>Zhang, Junwei</creatorcontrib><creatorcontrib>Bryantsev, Vyacheslav S.</creatorcontrib><creatorcontrib>Zhong, Mingjiang</creatorcontrib><creatorcontrib>Elimelech, Menachem</creatorcontrib><title>Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>•Molecularly designed polymeric inhibitor effectively mitigates silica scaling in solution.•Background salts significantly diminish the efficiency of silica scaling inhibition.•MD simulations elucidate inhibition mechanisms in the presence of background salts.•MD simulations uncover the distinctive role of divalent cations in inhibiting silica scaling.•The effectiveness of inhibitors significantly improves with increasing solution temperatures.
High concentrations of dissolved silica in saline industrial wastewaters and brines cause silica scale formation, significantly hampering the efficacy of diverse engineered systems. Applying functional polymers as scale inhibitors in process feedwater is a common strategy to mitigate silica scaling. However, feedwater characteristics often vary widely, depending on the specific processes, making the inhibition of silica scaling challenging and complex. In this study, we systematically investigate the role of ionic composition, specifically ionic strength and divalent ions, and solution temperature, in inhibiting silica scaling using molecularly designed amine/amide polymers. The inhibitor demonstrates effective stabilization of silicic acid, with inhibition efficiency of 74 and 55 % in the absence and presence of 20,000 ppm NaCl, respectively. However, further increasing the ionic strength of oversaturated silicic acid solutions significantly diminishes inhibition performance, rendering it ineffective at 180,000 ppm NaCl. Divalent inorganic cations exhibit a stronger impact on reducing inhibition efficiency compared to sodium ions. Molecular dynamics simulations reveal a competition mechanism between anionic silicic acid reactants (i.e., H3SiO4−) and chlorides for binding to ammonium groups within the polymeric inhibitor. Additionally, cations form clusters with H3SiO4− ions, hindering their stabilization with polymeric inhibitor. Notably, at elevated temperatures, the inhibitor achieves near-perfect inhibition for 500 ppm silicic acid solutions. This comprehensive assessment provides important insights into the effectiveness of silica scaling inhibitors under solution conditions relevant to real-world applications, addressing the challenges posed by varying solution parameters in diverse industrial processes.
[Display omitted]</description><subject>Antiscalants</subject><subject>Inhibitors</subject><subject>Ions</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Osmolar Concentration</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Silica polymerization</subject><subject>Silicic acid</subject><subject>Silicon Dioxide - chemistry</subject><subject>Temperature</subject><subject>Wastewater - chemistry</subject><issn>0043-1354</issn><issn>1879-2448</issn><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9P3DAQxa2qVVmg36CqrJ44kK3_ZWNzqFQhoEhIlRCcLceZsF459mI7IL49iUI5cvLI83szT_MQ-k7JmhK6-bVbP5uSIK8ZYWJNGW1I_QmtqGxUxYSQn9GKEMErymtxgA5z3hFCGOPqKzrgsmk2jRArNFyHrWtdcTHg2OPsvLMGZ2u8Cw_42ZUt7sdg577xeB_9ywApn-Hb6GEWTP_O4jwZCQ9le4o792Q8hDI38ik2ocMFhj0kU8YEx-hLb3yGb2_vEbq_vLg7_1vd_Lu6Pv9zU1nOZakYM72kouONYdLUgjJOpOookX3bgYReUWVb0VOphNxsLCEt5a2izVSLWhF-hH4uc2MuTmfrCtitjSGALZrxmtVkhk4WaJ_i4wi56MFlC96bAHHMmpNasVpRzidULKhNMecEvd4nN5j0oinRcxp6p5c09JyGXtKYZD_eNoztAN276P_5J-D3AsB0jCcHafYKwULn0my1i-7jDa8sX5zn</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Kaneda, Masashi</creator><creator>Cao, Tianchi</creator><creator>Dong, Dengpan</creator><creator>Zhang, Xiaowei</creator><creator>Chen, Yinan</creator><creator>Zhang, Junwei</creator><creator>Bryantsev, Vyacheslav S.</creator><creator>Zhong, Mingjiang</creator><creator>Elimelech, Menachem</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009-0008-7885-8871</orcidid><orcidid>https://orcid.org/0000-0001-7533-4708</orcidid><orcidid>https://orcid.org/0000-0003-0168-4996</orcidid><orcidid>https://orcid.org/0009-0004-0205-7112</orcidid><orcidid>https://orcid.org/0009-0002-8338-0872</orcidid><orcidid>https://orcid.org/0009000283380872</orcidid><orcidid>https://orcid.org/0000000301684996</orcidid><orcidid>https://orcid.org/0000000175334708</orcidid><orcidid>https://orcid.org/0009000878858871</orcidid><orcidid>https://orcid.org/0009000402057112</orcidid></search><sort><creationdate>20240701</creationdate><title>Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature</title><author>Kaneda, Masashi ; Cao, Tianchi ; Dong, Dengpan ; Zhang, Xiaowei ; Chen, Yinan ; Zhang, Junwei ; Bryantsev, Vyacheslav S. ; Zhong, Mingjiang ; Elimelech, Menachem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-22af814d37a28a54123089d108fbde8ef919cb4f1894866c00b13b91766c45903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Antiscalants</topic><topic>Inhibitors</topic><topic>Ions</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Osmolar Concentration</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Silica polymerization</topic><topic>Silicic acid</topic><topic>Silicon Dioxide - chemistry</topic><topic>Temperature</topic><topic>Wastewater - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaneda, Masashi</creatorcontrib><creatorcontrib>Cao, Tianchi</creatorcontrib><creatorcontrib>Dong, Dengpan</creatorcontrib><creatorcontrib>Zhang, Xiaowei</creatorcontrib><creatorcontrib>Chen, Yinan</creatorcontrib><creatorcontrib>Zhang, Junwei</creatorcontrib><creatorcontrib>Bryantsev, Vyacheslav S.</creatorcontrib><creatorcontrib>Zhong, Mingjiang</creatorcontrib><creatorcontrib>Elimelech, Menachem</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaneda, Masashi</au><au>Cao, Tianchi</au><au>Dong, Dengpan</au><au>Zhang, Xiaowei</au><au>Chen, Yinan</au><au>Zhang, Junwei</au><au>Bryantsev, Vyacheslav S.</au><au>Zhong, Mingjiang</au><au>Elimelech, Menachem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2024-07-01</date><risdate>2024</risdate><volume>258</volume><issue>C</issue><spage>121705</spage><pages>121705-</pages><artnum>121705</artnum><issn>0043-1354</issn><issn>1879-2448</issn><eissn>1879-2448</eissn><abstract>•Molecularly designed polymeric inhibitor effectively mitigates silica scaling in solution.•Background salts significantly diminish the efficiency of silica scaling inhibition.•MD simulations elucidate inhibition mechanisms in the presence of background salts.•MD simulations uncover the distinctive role of divalent cations in inhibiting silica scaling.•The effectiveness of inhibitors significantly improves with increasing solution temperatures.
High concentrations of dissolved silica in saline industrial wastewaters and brines cause silica scale formation, significantly hampering the efficacy of diverse engineered systems. Applying functional polymers as scale inhibitors in process feedwater is a common strategy to mitigate silica scaling. However, feedwater characteristics often vary widely, depending on the specific processes, making the inhibition of silica scaling challenging and complex. In this study, we systematically investigate the role of ionic composition, specifically ionic strength and divalent ions, and solution temperature, in inhibiting silica scaling using molecularly designed amine/amide polymers. The inhibitor demonstrates effective stabilization of silicic acid, with inhibition efficiency of 74 and 55 % in the absence and presence of 20,000 ppm NaCl, respectively. However, further increasing the ionic strength of oversaturated silicic acid solutions significantly diminishes inhibition performance, rendering it ineffective at 180,000 ppm NaCl. Divalent inorganic cations exhibit a stronger impact on reducing inhibition efficiency compared to sodium ions. Molecular dynamics simulations reveal a competition mechanism between anionic silicic acid reactants (i.e., H3SiO4−) and chlorides for binding to ammonium groups within the polymeric inhibitor. Additionally, cations form clusters with H3SiO4− ions, hindering their stabilization with polymeric inhibitor. Notably, at elevated temperatures, the inhibitor achieves near-perfect inhibition for 500 ppm silicic acid solutions. This comprehensive assessment provides important insights into the effectiveness of silica scaling inhibitors under solution conditions relevant to real-world applications, addressing the challenges posed by varying solution parameters in diverse industrial processes.
[Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38776744</pmid><doi>10.1016/j.watres.2024.121705</doi><orcidid>https://orcid.org/0009-0008-7885-8871</orcidid><orcidid>https://orcid.org/0000-0001-7533-4708</orcidid><orcidid>https://orcid.org/0000-0003-0168-4996</orcidid><orcidid>https://orcid.org/0009-0004-0205-7112</orcidid><orcidid>https://orcid.org/0009-0002-8338-0872</orcidid><orcidid>https://orcid.org/0009000283380872</orcidid><orcidid>https://orcid.org/0000000301684996</orcidid><orcidid>https://orcid.org/0000000175334708</orcidid><orcidid>https://orcid.org/0009000878858871</orcidid><orcidid>https://orcid.org/0009000402057112</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0043-1354 |
ispartof | Water research (Oxford), 2024-07, Vol.258 (C), p.121705, Article 121705 |
issn | 0043-1354 1879-2448 1879-2448 |
language | eng |
recordid | cdi_osti_scitechconnect_2352500 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Antiscalants Inhibitors Ions Molecular dynamics Molecular Dynamics Simulation Osmolar Concentration Polymers Polymers - chemistry Silica polymerization Silicic acid Silicon Dioxide - chemistry Temperature Wastewater - chemistry |
title | Inhibition of silica scaling with functional polymers: Role of ionic strength, divalent ions, and temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inhibition%20of%20silica%20scaling%20with%20functional%20polymers:%20Role%20of%20ionic%20strength,%20divalent%20ions,%20and%20temperature&rft.jtitle=Water%20research%20(Oxford)&rft.au=Kaneda,%20Masashi&rft.date=2024-07-01&rft.volume=258&rft.issue=C&rft.spage=121705&rft.pages=121705-&rft.artnum=121705&rft.issn=0043-1354&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.121705&rft_dat=%3Cproquest_osti_%3E3059259133%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059259133&rft_id=info:pmid/38776744&rft_els_id=S0043135424006067&rfr_iscdi=true |