Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC

In this paper, we study the kinetics of polyvinyl chloride (PVC) decomposition using a combination of experimental and computational approaches. We develop a simplified kinetic model that contains only two steps: dehydrochlorination of PVC and further decomposition of the PVC residue. The model is c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sustainable chemistry & engineering 2024-05, Vol.12 (19), p.7402-7413
Hauptverfasser: Wu, Jiayang, Papanikolaou, Konstantinos G., Cheng, Feng, Addison, Bennett, Cuthbertson, Amy A., Mavrikakis, Manos, Huber, George W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7413
container_issue 19
container_start_page 7402
container_title ACS sustainable chemistry & engineering
container_volume 12
creator Wu, Jiayang
Papanikolaou, Konstantinos G.
Cheng, Feng
Addison, Bennett
Cuthbertson, Amy A.
Mavrikakis, Manos
Huber, George W.
description In this paper, we study the kinetics of polyvinyl chloride (PVC) decomposition using a combination of experimental and computational approaches. We develop a simplified kinetic model that contains only two steps: dehydrochlorination of PVC and further decomposition of the PVC residue. The model is consistent with density functional theory (DFT) calculations and experimental data. Dehydrochlorination is an autocatalytic reaction that starts with a tertiary chloride (Cl) and generates hydrogen chloride (HCl) and benzene as the main products. Benzene and HCl formation rates showed similar trends, indicating that HCl likely catalyzes a homolytic carbon–carbon (C–C) bond cleavage, which gives rise to benzene and an aliphatic fragment. We characterized the structure of dehydrochlorinated PVC (PVC residue) by using thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). FTIR and NMR results indicate that the PVC residue contains 20% quaternary carbon content, indicating a high concentration of cross-linked molecules. We predict that the most probable structure in the cross-linked centers of the PVC residue is cyclohexadiene, which is supported by DFT calculations, FTIR, and NMR.
doi_str_mv 10.1021/acssuschemeng.4c00564
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2352421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153592590</sourcerecordid><originalsourceid>FETCH-LOGICAL-a303t-d1104c4be5118688b69eed7cee08919173d3a9684796e4645900b8271caddddf3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEElXhE5AiVmxa7NhJ7CUqT1GJSjx2yHKdCXGV2sV2QOHrcUkXsGI2M5q550pzk-QEoylGGT6XyvvOqwbWYN6mVCGUF3QvGWW4YBNEWb7_az5Mjr1foVick4zhUfJ6rw0ErdLH0FV9aut0Ydv-Q5u-TWdNa52uIF30Li699umnDk3cSydVAKe_ZNDWbKlLaPrKWfWDGBmgShcvs6PkoJath-NdHyfP11dPs9vJ_OHmbnYxn0iCSJhUGCOq6BJyjFnB2LLgAFWpABDjmOOSVETygtGSF0ALmnOEliwrsZJVrJqMk9PB1_qghVc6gGqUNQZUEBnJM5rhKDobRBtn3zvwQay1V9C20oDtvCA4JznPonmU5oNUOeu9g1psnF5L1wuMxDZ28Sd2sYs9cnjg4lmsbOdM_Pof5huD54th</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153592590</pqid></control><display><type>article</type><title>Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC</title><source>ACS Publications</source><creator>Wu, Jiayang ; Papanikolaou, Konstantinos G. ; Cheng, Feng ; Addison, Bennett ; Cuthbertson, Amy A. ; Mavrikakis, Manos ; Huber, George W.</creator><creatorcontrib>Wu, Jiayang ; Papanikolaou, Konstantinos G. ; Cheng, Feng ; Addison, Bennett ; Cuthbertson, Amy A. ; Mavrikakis, Manos ; Huber, George W. ; National Renewable Energy Laboratory (NREL), Golden, CO (United States) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>In this paper, we study the kinetics of polyvinyl chloride (PVC) decomposition using a combination of experimental and computational approaches. We develop a simplified kinetic model that contains only two steps: dehydrochlorination of PVC and further decomposition of the PVC residue. The model is consistent with density functional theory (DFT) calculations and experimental data. Dehydrochlorination is an autocatalytic reaction that starts with a tertiary chloride (Cl) and generates hydrogen chloride (HCl) and benzene as the main products. Benzene and HCl formation rates showed similar trends, indicating that HCl likely catalyzes a homolytic carbon–carbon (C–C) bond cleavage, which gives rise to benzene and an aliphatic fragment. We characterized the structure of dehydrochlorinated PVC (PVC residue) by using thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). FTIR and NMR results indicate that the PVC residue contains 20% quaternary carbon content, indicating a high concentration of cross-linked molecules. We predict that the most probable structure in the cross-linked centers of the PVC residue is cyclohexadiene, which is supported by DFT calculations, FTIR, and NMR.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.4c00564</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>benzene ; carbon ; chlorides ; crosslinking ; density functional theory ; DFT calculations ; Fourier transform infrared spectroscopy ; green chemistry ; homolytic cleavage ; hydrochloric acid ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; kinetic model ; kinetics ; nuclear magnetic resonance spectroscopy ; plastic pyrolysis ; poly(vinyl chloride) ; PVC dehydrochlorination ; pyrolysis ; thermogravimetry</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2024-05, Vol.12 (19), p.7402-7413</ispartof><rights>2024 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a303t-d1104c4be5118688b69eed7cee08919173d3a9684796e4645900b8271caddddf3</cites><orcidid>0000-0002-5293-5356 ; 0000-0002-5948-7955 ; 0000-0002-7838-6893 ; 0000000252935356 ; 0000000259487955 ; 0000000278386893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acssuschemeng.4c00564$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acssuschemeng.4c00564$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2352421$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Jiayang</creatorcontrib><creatorcontrib>Papanikolaou, Konstantinos G.</creatorcontrib><creatorcontrib>Cheng, Feng</creatorcontrib><creatorcontrib>Addison, Bennett</creatorcontrib><creatorcontrib>Cuthbertson, Amy A.</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Huber, George W.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>In this paper, we study the kinetics of polyvinyl chloride (PVC) decomposition using a combination of experimental and computational approaches. We develop a simplified kinetic model that contains only two steps: dehydrochlorination of PVC and further decomposition of the PVC residue. The model is consistent with density functional theory (DFT) calculations and experimental data. Dehydrochlorination is an autocatalytic reaction that starts with a tertiary chloride (Cl) and generates hydrogen chloride (HCl) and benzene as the main products. Benzene and HCl formation rates showed similar trends, indicating that HCl likely catalyzes a homolytic carbon–carbon (C–C) bond cleavage, which gives rise to benzene and an aliphatic fragment. We characterized the structure of dehydrochlorinated PVC (PVC residue) by using thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). FTIR and NMR results indicate that the PVC residue contains 20% quaternary carbon content, indicating a high concentration of cross-linked molecules. We predict that the most probable structure in the cross-linked centers of the PVC residue is cyclohexadiene, which is supported by DFT calculations, FTIR, and NMR.</description><subject>benzene</subject><subject>carbon</subject><subject>chlorides</subject><subject>crosslinking</subject><subject>density functional theory</subject><subject>DFT calculations</subject><subject>Fourier transform infrared spectroscopy</subject><subject>green chemistry</subject><subject>homolytic cleavage</subject><subject>hydrochloric acid</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>kinetic model</subject><subject>kinetics</subject><subject>nuclear magnetic resonance spectroscopy</subject><subject>plastic pyrolysis</subject><subject>poly(vinyl chloride)</subject><subject>PVC dehydrochlorination</subject><subject>pyrolysis</subject><subject>thermogravimetry</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEElXhE5AiVmxa7NhJ7CUqT1GJSjx2yHKdCXGV2sV2QOHrcUkXsGI2M5q550pzk-QEoylGGT6XyvvOqwbWYN6mVCGUF3QvGWW4YBNEWb7_az5Mjr1foVick4zhUfJ6rw0ErdLH0FV9aut0Ydv-Q5u-TWdNa52uIF30Li699umnDk3cSydVAKe_ZNDWbKlLaPrKWfWDGBmgShcvs6PkoJath-NdHyfP11dPs9vJ_OHmbnYxn0iCSJhUGCOq6BJyjFnB2LLgAFWpABDjmOOSVETygtGSF0ALmnOEliwrsZJVrJqMk9PB1_qghVc6gGqUNQZUEBnJM5rhKDobRBtn3zvwQay1V9C20oDtvCA4JznPonmU5oNUOeu9g1psnF5L1wuMxDZ28Sd2sYs9cnjg4lmsbOdM_Pof5huD54th</recordid><startdate>20240513</startdate><enddate>20240513</enddate><creator>Wu, Jiayang</creator><creator>Papanikolaou, Konstantinos G.</creator><creator>Cheng, Feng</creator><creator>Addison, Bennett</creator><creator>Cuthbertson, Amy A.</creator><creator>Mavrikakis, Manos</creator><creator>Huber, George W.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000-0002-5948-7955</orcidid><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid><orcidid>https://orcid.org/0000000259487955</orcidid><orcidid>https://orcid.org/0000000278386893</orcidid></search><sort><creationdate>20240513</creationdate><title>Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC</title><author>Wu, Jiayang ; Papanikolaou, Konstantinos G. ; Cheng, Feng ; Addison, Bennett ; Cuthbertson, Amy A. ; Mavrikakis, Manos ; Huber, George W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a303t-d1104c4be5118688b69eed7cee08919173d3a9684796e4645900b8271caddddf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>benzene</topic><topic>carbon</topic><topic>chlorides</topic><topic>crosslinking</topic><topic>density functional theory</topic><topic>DFT calculations</topic><topic>Fourier transform infrared spectroscopy</topic><topic>green chemistry</topic><topic>homolytic cleavage</topic><topic>hydrochloric acid</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>kinetic model</topic><topic>kinetics</topic><topic>nuclear magnetic resonance spectroscopy</topic><topic>plastic pyrolysis</topic><topic>poly(vinyl chloride)</topic><topic>PVC dehydrochlorination</topic><topic>pyrolysis</topic><topic>thermogravimetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Jiayang</creatorcontrib><creatorcontrib>Papanikolaou, Konstantinos G.</creatorcontrib><creatorcontrib>Cheng, Feng</creatorcontrib><creatorcontrib>Addison, Bennett</creatorcontrib><creatorcontrib>Cuthbertson, Amy A.</creatorcontrib><creatorcontrib>Mavrikakis, Manos</creatorcontrib><creatorcontrib>Huber, George W.</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Jiayang</au><au>Papanikolaou, Konstantinos G.</au><au>Cheng, Feng</au><au>Addison, Bennett</au><au>Cuthbertson, Amy A.</au><au>Mavrikakis, Manos</au><au>Huber, George W.</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2024-05-13</date><risdate>2024</risdate><volume>12</volume><issue>19</issue><spage>7402</spage><epage>7413</epage><pages>7402-7413</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>In this paper, we study the kinetics of polyvinyl chloride (PVC) decomposition using a combination of experimental and computational approaches. We develop a simplified kinetic model that contains only two steps: dehydrochlorination of PVC and further decomposition of the PVC residue. The model is consistent with density functional theory (DFT) calculations and experimental data. Dehydrochlorination is an autocatalytic reaction that starts with a tertiary chloride (Cl) and generates hydrogen chloride (HCl) and benzene as the main products. Benzene and HCl formation rates showed similar trends, indicating that HCl likely catalyzes a homolytic carbon–carbon (C–C) bond cleavage, which gives rise to benzene and an aliphatic fragment. We characterized the structure of dehydrochlorinated PVC (PVC residue) by using thermal gravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR), and nuclear magnetic resonance spectroscopy (NMR). FTIR and NMR results indicate that the PVC residue contains 20% quaternary carbon content, indicating a high concentration of cross-linked molecules. We predict that the most probable structure in the cross-linked centers of the PVC residue is cyclohexadiene, which is supported by DFT calculations, FTIR, and NMR.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.4c00564</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-5293-5356</orcidid><orcidid>https://orcid.org/0000-0002-5948-7955</orcidid><orcidid>https://orcid.org/0000-0002-7838-6893</orcidid><orcidid>https://orcid.org/0000000252935356</orcidid><orcidid>https://orcid.org/0000000259487955</orcidid><orcidid>https://orcid.org/0000000278386893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2024-05, Vol.12 (19), p.7402-7413
issn 2168-0485
2168-0485
language eng
recordid cdi_osti_scitechconnect_2352421
source ACS Publications
subjects benzene
carbon
chlorides
crosslinking
density functional theory
DFT calculations
Fourier transform infrared spectroscopy
green chemistry
homolytic cleavage
hydrochloric acid
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
kinetic model
kinetics
nuclear magnetic resonance spectroscopy
plastic pyrolysis
poly(vinyl chloride)
PVC dehydrochlorination
pyrolysis
thermogravimetry
title Kinetic Study of Polyvinyl Chloride Pyrolysis with Characterization of Dehydrochlorinated PVC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A25%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Study%20of%20Polyvinyl%20Chloride%20Pyrolysis%20with%20Characterization%20of%20Dehydrochlorinated%20PVC&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Wu,%20Jiayang&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-05-13&rft.volume=12&rft.issue=19&rft.spage=7402&rft.epage=7413&rft.pages=7402-7413&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.4c00564&rft_dat=%3Cproquest_osti_%3E3153592590%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153592590&rft_id=info:pmid/&rfr_iscdi=true