High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells
To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. H...
Gespeichert in:
Veröffentlicht in: | Nature energy 2021-08, Vol.6 (8), p.834-843 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 843 |
---|---|
container_issue | 8 |
container_start_page | 834 |
container_title | Nature energy |
container_volume | 6 |
creator | Adabi, Horie Shakouri, Abolfazl Ul Hassan, Noor Varcoe, John R. Zulevi, Barr Serov, Alexey Regalbuto, John R. Mustain, William E. |
description | To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H
2
/O
2
reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm
−2
(>1 W cm
−2
with H
2
/air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an
iR
-corrected current density at 0.9 V of 100 mA cm
−2
. Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm
2
, 0.08 mg Pt per cm
2
) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt).
Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance. |
doi_str_mv | 10.1038/s41560-021-00878-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2351808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562646626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQhxdRsFRfwFPQ8-ok2fzxKMWqIHrRc0izk3bL7qYmW7A338E39EmMrqAnD5nMwPcbhq8oTiicU-D6IlVUSCiB0RJAK12qvWLCQORGVHL_T39YHKe0BgB2yZjQdFLUt81yVW4w-hC7pl8SF7oOo2tsS-b48fb-kN-MODusQo0EW3RDDHm07S4NJKeI7ZvQl_jqVrZfIumwW0TbI_FbbInDtk1HxYG3bcLjn39aPM-vn2a35f3jzd3s6r50lZBDSZV2XFuoKqGQX1IPQqCizHsB6JTGWqJyQnDOAZwXismaa-ZlBUwtXM2nxem4N6ShMck1A7qVC32fjzaMC6pBZ-hshDYxvGwxDWYdtrHPdxkmJJOVzCVTbKRcDClF9GYTm87GnaFgvqyb0brJ1s23daNyiI-hlOHsIv6u_if1CcP4hgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562646626</pqid></control><display><type>article</type><title>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Adabi, Horie ; Shakouri, Abolfazl ; Ul Hassan, Noor ; Varcoe, John R. ; Zulevi, Barr ; Serov, Alexey ; Regalbuto, John R. ; Mustain, William E.</creator><creatorcontrib>Adabi, Horie ; Shakouri, Abolfazl ; Ul Hassan, Noor ; Varcoe, John R. ; Zulevi, Barr ; Serov, Alexey ; Regalbuto, John R. ; Mustain, William E. ; Pajarito Powder, LLC, Albuquerque, NM (United States)</creatorcontrib><description>To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H
2
/O
2
reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm
−2
(>1 W cm
−2
with H
2
/air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an
iR
-corrected current density at 0.9 V of 100 mA cm
−2
. Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm
2
, 0.08 mg Pt per cm
2
) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt).
Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-021-00878-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/898 ; 639/4077/893 ; Anion exchanging ; Catalysts ; Cathodes ; Chemical engineering ; Economics and Management ; Electrocatalysts ; Energy ; Energy Policy ; ENERGY STORAGE ; Energy Systems ; Fuel cells ; Fuel technology ; Heavy metals ; Intermetallic compounds ; Ions ; Iron ; Membranes ; Oxygen ; Platinum ; Platinum metals ; Renewable and Green Energy</subject><ispartof>Nature energy, 2021-08, Vol.6 (8), p.834-843</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</citedby><cites>FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</cites><orcidid>0000-0001-9898-0235 ; 0000-0001-7804-6410 ; 0000-0003-4529-5829 ; 0000-0003-1696-945X ; 0000-0003-3182-4726 ; 0000000331824726 ; 0000000178046410 ; 000000031696945X ; 0000000345295829 ; 0000000198980235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-021-00878-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-021-00878-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2351808$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adabi, Horie</creatorcontrib><creatorcontrib>Shakouri, Abolfazl</creatorcontrib><creatorcontrib>Ul Hassan, Noor</creatorcontrib><creatorcontrib>Varcoe, John R.</creatorcontrib><creatorcontrib>Zulevi, Barr</creatorcontrib><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Regalbuto, John R.</creatorcontrib><creatorcontrib>Mustain, William E.</creatorcontrib><creatorcontrib>Pajarito Powder, LLC, Albuquerque, NM (United States)</creatorcontrib><title>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H
2
/O
2
reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm
−2
(>1 W cm
−2
with H
2
/air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an
iR
-corrected current density at 0.9 V of 100 mA cm
−2
. Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm
2
, 0.08 mg Pt per cm
2
) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt).
Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.</description><subject>639/166/898</subject><subject>639/4077/893</subject><subject>Anion exchanging</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chemical engineering</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>ENERGY STORAGE</subject><subject>Energy Systems</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heavy metals</subject><subject>Intermetallic compounds</subject><subject>Ions</subject><subject>Iron</subject><subject>Membranes</subject><subject>Oxygen</subject><subject>Platinum</subject><subject>Platinum metals</subject><subject>Renewable and Green Energy</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9KAzEQhxdRsFRfwFPQ8-ok2fzxKMWqIHrRc0izk3bL7qYmW7A338E39EmMrqAnD5nMwPcbhq8oTiicU-D6IlVUSCiB0RJAK12qvWLCQORGVHL_T39YHKe0BgB2yZjQdFLUt81yVW4w-hC7pl8SF7oOo2tsS-b48fb-kN-MODusQo0EW3RDDHm07S4NJKeI7ZvQl_jqVrZfIumwW0TbI_FbbInDtk1HxYG3bcLjn39aPM-vn2a35f3jzd3s6r50lZBDSZV2XFuoKqGQX1IPQqCizHsB6JTGWqJyQnDOAZwXismaa-ZlBUwtXM2nxem4N6ShMck1A7qVC32fjzaMC6pBZ-hshDYxvGwxDWYdtrHPdxkmJJOVzCVTbKRcDClF9GYTm87GnaFgvqyb0brJ1s23daNyiI-hlOHsIv6u_if1CcP4hgE</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Adabi, Horie</creator><creator>Shakouri, Abolfazl</creator><creator>Ul Hassan, Noor</creator><creator>Varcoe, John R.</creator><creator>Zulevi, Barr</creator><creator>Serov, Alexey</creator><creator>Regalbuto, John R.</creator><creator>Mustain, William E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9898-0235</orcidid><orcidid>https://orcid.org/0000-0001-7804-6410</orcidid><orcidid>https://orcid.org/0000-0003-4529-5829</orcidid><orcidid>https://orcid.org/0000-0003-1696-945X</orcidid><orcidid>https://orcid.org/0000-0003-3182-4726</orcidid><orcidid>https://orcid.org/0000000331824726</orcidid><orcidid>https://orcid.org/0000000178046410</orcidid><orcidid>https://orcid.org/000000031696945X</orcidid><orcidid>https://orcid.org/0000000345295829</orcidid><orcidid>https://orcid.org/0000000198980235</orcidid></search><sort><creationdate>20210805</creationdate><title>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</title><author>Adabi, Horie ; Shakouri, Abolfazl ; Ul Hassan, Noor ; Varcoe, John R. ; Zulevi, Barr ; Serov, Alexey ; Regalbuto, John R. ; Mustain, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/898</topic><topic>639/4077/893</topic><topic>Anion exchanging</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chemical engineering</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>ENERGY STORAGE</topic><topic>Energy Systems</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heavy metals</topic><topic>Intermetallic compounds</topic><topic>Ions</topic><topic>Iron</topic><topic>Membranes</topic><topic>Oxygen</topic><topic>Platinum</topic><topic>Platinum metals</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adabi, Horie</creatorcontrib><creatorcontrib>Shakouri, Abolfazl</creatorcontrib><creatorcontrib>Ul Hassan, Noor</creatorcontrib><creatorcontrib>Varcoe, John R.</creatorcontrib><creatorcontrib>Zulevi, Barr</creatorcontrib><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Regalbuto, John R.</creatorcontrib><creatorcontrib>Mustain, William E.</creatorcontrib><creatorcontrib>Pajarito Powder, LLC, Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adabi, Horie</au><au>Shakouri, Abolfazl</au><au>Ul Hassan, Noor</au><au>Varcoe, John R.</au><au>Zulevi, Barr</au><au>Serov, Alexey</au><au>Regalbuto, John R.</au><au>Mustain, William E.</au><aucorp>Pajarito Powder, LLC, Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-08-05</date><risdate>2021</risdate><volume>6</volume><issue>8</issue><spage>834</spage><epage>843</epage><pages>834-843</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H
2
/O
2
reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm
−2
(>1 W cm
−2
with H
2
/air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an
iR
-corrected current density at 0.9 V of 100 mA cm
−2
. Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm
2
, 0.08 mg Pt per cm
2
) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt).
Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-021-00878-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9898-0235</orcidid><orcidid>https://orcid.org/0000-0001-7804-6410</orcidid><orcidid>https://orcid.org/0000-0003-4529-5829</orcidid><orcidid>https://orcid.org/0000-0003-1696-945X</orcidid><orcidid>https://orcid.org/0000-0003-3182-4726</orcidid><orcidid>https://orcid.org/0000000331824726</orcidid><orcidid>https://orcid.org/0000000178046410</orcidid><orcidid>https://orcid.org/000000031696945X</orcidid><orcidid>https://orcid.org/0000000345295829</orcidid><orcidid>https://orcid.org/0000000198980235</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-7546 |
ispartof | Nature energy, 2021-08, Vol.6 (8), p.834-843 |
issn | 2058-7546 2058-7546 |
language | eng |
recordid | cdi_osti_scitechconnect_2351808 |
source | Springer Nature - Complete Springer Journals |
subjects | 639/166/898 639/4077/893 Anion exchanging Catalysts Cathodes Chemical engineering Economics and Management Electrocatalysts Energy Energy Policy ENERGY STORAGE Energy Systems Fuel cells Fuel technology Heavy metals Intermetallic compounds Ions Iron Membranes Oxygen Platinum Platinum metals Renewable and Green Energy |
title | High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performing%20commercial%20Fe%E2%80%93N%E2%80%93C%20cathode%20electrocatalyst%20for%20anion-exchange%20membrane%20fuel%20cells&rft.jtitle=Nature%20energy&rft.au=Adabi,%20Horie&rft.aucorp=Pajarito%20Powder,%20LLC,%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-08-05&rft.volume=6&rft.issue=8&rft.spage=834&rft.epage=843&rft.pages=834-843&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-021-00878-7&rft_dat=%3Cproquest_osti_%3E2562646626%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562646626&rft_id=info:pmid/&rfr_iscdi=true |