High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells

To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature energy 2021-08, Vol.6 (8), p.834-843
Hauptverfasser: Adabi, Horie, Shakouri, Abolfazl, Ul Hassan, Noor, Varcoe, John R., Zulevi, Barr, Serov, Alexey, Regalbuto, John R., Mustain, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 843
container_issue 8
container_start_page 834
container_title Nature energy
container_volume 6
creator Adabi, Horie
Shakouri, Abolfazl
Ul Hassan, Noor
Varcoe, John R.
Zulevi, Barr
Serov, Alexey
Regalbuto, John R.
Mustain, William E.
description To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H 2 /O 2 reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm −2 (>1 W cm −2 with H 2 /air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an iR -corrected current density at 0.9 V of 100 mA cm −2 . Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm 2 , 0.08 mg Pt per cm 2 ) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt). Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.
doi_str_mv 10.1038/s41560-021-00878-7
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2351808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2562646626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</originalsourceid><addsrcrecordid>eNp9kM9KAzEQhxdRsFRfwFPQ8-ok2fzxKMWqIHrRc0izk3bL7qYmW7A338E39EmMrqAnD5nMwPcbhq8oTiicU-D6IlVUSCiB0RJAK12qvWLCQORGVHL_T39YHKe0BgB2yZjQdFLUt81yVW4w-hC7pl8SF7oOo2tsS-b48fb-kN-MODusQo0EW3RDDHm07S4NJKeI7ZvQl_jqVrZfIumwW0TbI_FbbInDtk1HxYG3bcLjn39aPM-vn2a35f3jzd3s6r50lZBDSZV2XFuoKqGQX1IPQqCizHsB6JTGWqJyQnDOAZwXismaa-ZlBUwtXM2nxem4N6ShMck1A7qVC32fjzaMC6pBZ-hshDYxvGwxDWYdtrHPdxkmJJOVzCVTbKRcDClF9GYTm87GnaFgvqyb0brJ1s23daNyiI-hlOHsIv6u_if1CcP4hgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2562646626</pqid></control><display><type>article</type><title>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</title><source>Springer Nature - Complete Springer Journals</source><creator>Adabi, Horie ; Shakouri, Abolfazl ; Ul Hassan, Noor ; Varcoe, John R. ; Zulevi, Barr ; Serov, Alexey ; Regalbuto, John R. ; Mustain, William E.</creator><creatorcontrib>Adabi, Horie ; Shakouri, Abolfazl ; Ul Hassan, Noor ; Varcoe, John R. ; Zulevi, Barr ; Serov, Alexey ; Regalbuto, John R. ; Mustain, William E. ; Pajarito Powder, LLC, Albuquerque, NM (United States)</creatorcontrib><description>To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H 2 /O 2 reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm −2 (&gt;1 W cm −2 with H 2 /air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an iR -corrected current density at 0.9 V of 100 mA cm −2 . Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm 2 , 0.08 mg Pt per cm 2 ) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt). Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.</description><identifier>ISSN: 2058-7546</identifier><identifier>EISSN: 2058-7546</identifier><identifier>DOI: 10.1038/s41560-021-00878-7</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/898 ; 639/4077/893 ; Anion exchanging ; Catalysts ; Cathodes ; Chemical engineering ; Economics and Management ; Electrocatalysts ; Energy ; Energy Policy ; ENERGY STORAGE ; Energy Systems ; Fuel cells ; Fuel technology ; Heavy metals ; Intermetallic compounds ; Ions ; Iron ; Membranes ; Oxygen ; Platinum ; Platinum metals ; Renewable and Green Energy</subject><ispartof>Nature energy, 2021-08, Vol.6 (8), p.834-843</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</citedby><cites>FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</cites><orcidid>0000-0001-9898-0235 ; 0000-0001-7804-6410 ; 0000-0003-4529-5829 ; 0000-0003-1696-945X ; 0000-0003-3182-4726 ; 0000000331824726 ; 0000000178046410 ; 000000031696945X ; 0000000345295829 ; 0000000198980235</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41560-021-00878-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41560-021-00878-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2351808$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Adabi, Horie</creatorcontrib><creatorcontrib>Shakouri, Abolfazl</creatorcontrib><creatorcontrib>Ul Hassan, Noor</creatorcontrib><creatorcontrib>Varcoe, John R.</creatorcontrib><creatorcontrib>Zulevi, Barr</creatorcontrib><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Regalbuto, John R.</creatorcontrib><creatorcontrib>Mustain, William E.</creatorcontrib><creatorcontrib>Pajarito Powder, LLC, Albuquerque, NM (United States)</creatorcontrib><title>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</title><title>Nature energy</title><addtitle>Nat Energy</addtitle><description>To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H 2 /O 2 reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm −2 (&gt;1 W cm −2 with H 2 /air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an iR -corrected current density at 0.9 V of 100 mA cm −2 . Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm 2 , 0.08 mg Pt per cm 2 ) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt). Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.</description><subject>639/166/898</subject><subject>639/4077/893</subject><subject>Anion exchanging</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chemical engineering</subject><subject>Economics and Management</subject><subject>Electrocatalysts</subject><subject>Energy</subject><subject>Energy Policy</subject><subject>ENERGY STORAGE</subject><subject>Energy Systems</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Heavy metals</subject><subject>Intermetallic compounds</subject><subject>Ions</subject><subject>Iron</subject><subject>Membranes</subject><subject>Oxygen</subject><subject>Platinum</subject><subject>Platinum metals</subject><subject>Renewable and Green Energy</subject><issn>2058-7546</issn><issn>2058-7546</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kM9KAzEQhxdRsFRfwFPQ8-ok2fzxKMWqIHrRc0izk3bL7qYmW7A338E39EmMrqAnD5nMwPcbhq8oTiicU-D6IlVUSCiB0RJAK12qvWLCQORGVHL_T39YHKe0BgB2yZjQdFLUt81yVW4w-hC7pl8SF7oOo2tsS-b48fb-kN-MODusQo0EW3RDDHm07S4NJKeI7ZvQl_jqVrZfIumwW0TbI_FbbInDtk1HxYG3bcLjn39aPM-vn2a35f3jzd3s6r50lZBDSZV2XFuoKqGQX1IPQqCizHsB6JTGWqJyQnDOAZwXismaa-ZlBUwtXM2nxem4N6ShMck1A7qVC32fjzaMC6pBZ-hshDYxvGwxDWYdtrHPdxkmJJOVzCVTbKRcDClF9GYTm87GnaFgvqyb0brJ1s23daNyiI-hlOHsIv6u_if1CcP4hgE</recordid><startdate>20210805</startdate><enddate>20210805</enddate><creator>Adabi, Horie</creator><creator>Shakouri, Abolfazl</creator><creator>Ul Hassan, Noor</creator><creator>Varcoe, John R.</creator><creator>Zulevi, Barr</creator><creator>Serov, Alexey</creator><creator>Regalbuto, John R.</creator><creator>Mustain, William E.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9898-0235</orcidid><orcidid>https://orcid.org/0000-0001-7804-6410</orcidid><orcidid>https://orcid.org/0000-0003-4529-5829</orcidid><orcidid>https://orcid.org/0000-0003-1696-945X</orcidid><orcidid>https://orcid.org/0000-0003-3182-4726</orcidid><orcidid>https://orcid.org/0000000331824726</orcidid><orcidid>https://orcid.org/0000000178046410</orcidid><orcidid>https://orcid.org/000000031696945X</orcidid><orcidid>https://orcid.org/0000000345295829</orcidid><orcidid>https://orcid.org/0000000198980235</orcidid></search><sort><creationdate>20210805</creationdate><title>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</title><author>Adabi, Horie ; Shakouri, Abolfazl ; Ul Hassan, Noor ; Varcoe, John R. ; Zulevi, Barr ; Serov, Alexey ; Regalbuto, John R. ; Mustain, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-178c38a04457e391f055e712ff50ec78ed6e7c5533300cf5726d382f64027bcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/898</topic><topic>639/4077/893</topic><topic>Anion exchanging</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chemical engineering</topic><topic>Economics and Management</topic><topic>Electrocatalysts</topic><topic>Energy</topic><topic>Energy Policy</topic><topic>ENERGY STORAGE</topic><topic>Energy Systems</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Heavy metals</topic><topic>Intermetallic compounds</topic><topic>Ions</topic><topic>Iron</topic><topic>Membranes</topic><topic>Oxygen</topic><topic>Platinum</topic><topic>Platinum metals</topic><topic>Renewable and Green Energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adabi, Horie</creatorcontrib><creatorcontrib>Shakouri, Abolfazl</creatorcontrib><creatorcontrib>Ul Hassan, Noor</creatorcontrib><creatorcontrib>Varcoe, John R.</creatorcontrib><creatorcontrib>Zulevi, Barr</creatorcontrib><creatorcontrib>Serov, Alexey</creatorcontrib><creatorcontrib>Regalbuto, John R.</creatorcontrib><creatorcontrib>Mustain, William E.</creatorcontrib><creatorcontrib>Pajarito Powder, LLC, Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adabi, Horie</au><au>Shakouri, Abolfazl</au><au>Ul Hassan, Noor</au><au>Varcoe, John R.</au><au>Zulevi, Barr</au><au>Serov, Alexey</au><au>Regalbuto, John R.</au><au>Mustain, William E.</au><aucorp>Pajarito Powder, LLC, Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells</atitle><jtitle>Nature energy</jtitle><stitle>Nat Energy</stitle><date>2021-08-05</date><risdate>2021</risdate><volume>6</volume><issue>8</issue><spage>834</spage><epage>843</epage><pages>834-843</pages><issn>2058-7546</issn><eissn>2058-7546</eissn><abstract>To reduce the cost of fuel cell stacks and systems, it is important to create commercial catalysts that are free of platinum group metals (PGMs). To do this, such catalysts must have very high activity, but also have the correct microstructure to facilitate the transport of reactants and products. Here, we show a high-performing commercial oxygen reduction catalyst that was specifically developed for operation in alkaline media and is demonstrated in the cathode of operating anion-exchange membrane fuel cells (AEMFCs). With H 2 /O 2 reacting gases, AEMFCs made with Fe–N–C cathodes achieved a peak power density exceeding 2 W cm −2 (&gt;1 W cm −2 with H 2 /air) and operated with very good voltage durability for more than 150 h. These AEMFCs also realized an iR -corrected current density at 0.9 V of 100 mA cm −2 . Finally, in a second configuration, Fe–N–C cathodes paired with low-loading PtRu/C anodes (0.125 mg PtRu per cm 2 , 0.08 mg Pt per cm 2 ) demonstrated a specific power of 10.4 W per mg PGM (16.25 W per mg Pt). Highly active oxygen reduction catalysts that are free of platinum group metals would decrease the cost of fuel cells. Here, the authors report on a commercial Fe–N–C-based catalyst that can replace platinum group metal-based catalysts in the cathodes of anion-exchange membrane fuel cells without a severe loss of performance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41560-021-00878-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9898-0235</orcidid><orcidid>https://orcid.org/0000-0001-7804-6410</orcidid><orcidid>https://orcid.org/0000-0003-4529-5829</orcidid><orcidid>https://orcid.org/0000-0003-1696-945X</orcidid><orcidid>https://orcid.org/0000-0003-3182-4726</orcidid><orcidid>https://orcid.org/0000000331824726</orcidid><orcidid>https://orcid.org/0000000178046410</orcidid><orcidid>https://orcid.org/000000031696945X</orcidid><orcidid>https://orcid.org/0000000345295829</orcidid><orcidid>https://orcid.org/0000000198980235</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-7546
ispartof Nature energy, 2021-08, Vol.6 (8), p.834-843
issn 2058-7546
2058-7546
language eng
recordid cdi_osti_scitechconnect_2351808
source Springer Nature - Complete Springer Journals
subjects 639/166/898
639/4077/893
Anion exchanging
Catalysts
Cathodes
Chemical engineering
Economics and Management
Electrocatalysts
Energy
Energy Policy
ENERGY STORAGE
Energy Systems
Fuel cells
Fuel technology
Heavy metals
Intermetallic compounds
Ions
Iron
Membranes
Oxygen
Platinum
Platinum metals
Renewable and Green Energy
title High-performing commercial Fe–N–C cathode electrocatalyst for anion-exchange membrane fuel cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A22%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-performing%20commercial%20Fe%E2%80%93N%E2%80%93C%20cathode%20electrocatalyst%20for%20anion-exchange%20membrane%20fuel%20cells&rft.jtitle=Nature%20energy&rft.au=Adabi,%20Horie&rft.aucorp=Pajarito%20Powder,%20LLC,%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-08-05&rft.volume=6&rft.issue=8&rft.spage=834&rft.epage=843&rft.pages=834-843&rft.issn=2058-7546&rft.eissn=2058-7546&rft_id=info:doi/10.1038/s41560-021-00878-7&rft_dat=%3Cproquest_osti_%3E2562646626%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2562646626&rft_id=info:pmid/&rfr_iscdi=true