Mechanism of Electrocatalytic H2 Evolution, Carbonyl Hydrogenation, and Carbon–Carbon Coupling on Cu
Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon–carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer–Tafel mechanism on Cu/C...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2024-05, Vol.146 (20), p.13949-13961 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13961 |
---|---|
container_issue | 20 |
container_start_page | 13949 |
container_title | Journal of the American Chemical Society |
container_volume | 146 |
creator | Chen, Hongwen Iyer, Jayendran Liu, Yue Krebs, Simon Deng, Fuli Jentys, Andreas Searles, Debra J. Haider, M. Ali Khare, Rachit Lercher, Johannes A. |
description | Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon–carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer–Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C–C bond, which is rate-determining. The C–C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin. |
doi_str_mv | 10.1021/jacs.4c01911 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2349535</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3054839746</sourcerecordid><originalsourceid>FETCH-LOGICAL-a286t-d50e25bd3a56921daef6bcb1f1ff94bdad5d249ed646b5f062f9ceb05fe386693</originalsourceid><addsrcrecordid>eNpFkE1OwzAQhS0EEqWw4wARKxak-L_xEkWFIhWxgbXl-Kekcu0SO0jdcQduyElIlUqs5s3M02jeB8A1gjMEMbrfKJ1mVEMkEDoBE8QwLBnC_BRMIIS4nFecnIOLlDZDS3GFJsC9WP2hQpu2RXTFwludu6hVVn6fW10scbH4ir7PbQx3Ra26Joa9L5Z708W1DWqcq2COu9_vn1EUdex3vg3r4qD7S3DmlE_26lin4P1x8VYvy9Xr03P9sCoVrnguDYMWs8YQxbjAyCjreKMb5JBzgjZGGWYwFdZwyhvmIMdOaNtA5iypOBdkCm7GuzHlVibd5iGejiEMuSQmVDDCBtPtaNp18bO3Kcttm7T1XgUb-yQJZLQiYk75v3UgKzex78LwvURQHnjLA2955E3-ACFNdRk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3054839746</pqid></control><display><type>article</type><title>Mechanism of Electrocatalytic H2 Evolution, Carbonyl Hydrogenation, and Carbon–Carbon Coupling on Cu</title><source>American Chemical Society Journals</source><creator>Chen, Hongwen ; Iyer, Jayendran ; Liu, Yue ; Krebs, Simon ; Deng, Fuli ; Jentys, Andreas ; Searles, Debra J. ; Haider, M. Ali ; Khare, Rachit ; Lercher, Johannes A.</creator><creatorcontrib>Chen, Hongwen ; Iyer, Jayendran ; Liu, Yue ; Krebs, Simon ; Deng, Fuli ; Jentys, Andreas ; Searles, Debra J. ; Haider, M. Ali ; Khare, Rachit ; Lercher, Johannes A. ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon–carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer–Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C–C bond, which is rate-determining. The C–C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.4c01911</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Journal of the American Chemical Society, 2024-05, Vol.146 (20), p.13949-13961</ispartof><rights>2024 The Authors. Published by American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2495-1404 ; 0000-0001-8939-0233 ; 0000-0003-1346-8318 ; 0000-0002-8885-5454 ; 0000-0002-1519-5184 ; 0000000189390233 ; 0000000288855454 ; 0000000224951404 ; 0000000313468318 ; 0000000215195184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.4c01911$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.4c01911$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2349535$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hongwen</creatorcontrib><creatorcontrib>Iyer, Jayendran</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Krebs, Simon</creatorcontrib><creatorcontrib>Deng, Fuli</creatorcontrib><creatorcontrib>Jentys, Andreas</creatorcontrib><creatorcontrib>Searles, Debra J.</creatorcontrib><creatorcontrib>Haider, M. Ali</creatorcontrib><creatorcontrib>Khare, Rachit</creatorcontrib><creatorcontrib>Lercher, Johannes A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>Mechanism of Electrocatalytic H2 Evolution, Carbonyl Hydrogenation, and Carbon–Carbon Coupling on Cu</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon–carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer–Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C–C bond, which is rate-determining. The C–C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpFkE1OwzAQhS0EEqWw4wARKxak-L_xEkWFIhWxgbXl-Kekcu0SO0jdcQduyElIlUqs5s3M02jeB8A1gjMEMbrfKJ1mVEMkEDoBE8QwLBnC_BRMIIS4nFecnIOLlDZDS3GFJsC9WP2hQpu2RXTFwludu6hVVn6fW10scbH4ir7PbQx3Ra26Joa9L5Z708W1DWqcq2COu9_vn1EUdex3vg3r4qD7S3DmlE_26lin4P1x8VYvy9Xr03P9sCoVrnguDYMWs8YQxbjAyCjreKMb5JBzgjZGGWYwFdZwyhvmIMdOaNtA5iypOBdkCm7GuzHlVibd5iGejiEMuSQmVDDCBtPtaNp18bO3Kcttm7T1XgUb-yQJZLQiYk75v3UgKzex78LwvURQHnjLA2955E3-ACFNdRk</recordid><startdate>20240522</startdate><enddate>20240522</enddate><creator>Chen, Hongwen</creator><creator>Iyer, Jayendran</creator><creator>Liu, Yue</creator><creator>Krebs, Simon</creator><creator>Deng, Fuli</creator><creator>Jentys, Andreas</creator><creator>Searles, Debra J.</creator><creator>Haider, M. Ali</creator><creator>Khare, Rachit</creator><creator>Lercher, Johannes A.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2495-1404</orcidid><orcidid>https://orcid.org/0000-0001-8939-0233</orcidid><orcidid>https://orcid.org/0000-0003-1346-8318</orcidid><orcidid>https://orcid.org/0000-0002-8885-5454</orcidid><orcidid>https://orcid.org/0000-0002-1519-5184</orcidid><orcidid>https://orcid.org/0000000189390233</orcidid><orcidid>https://orcid.org/0000000288855454</orcidid><orcidid>https://orcid.org/0000000224951404</orcidid><orcidid>https://orcid.org/0000000313468318</orcidid><orcidid>https://orcid.org/0000000215195184</orcidid></search><sort><creationdate>20240522</creationdate><title>Mechanism of Electrocatalytic H2 Evolution, Carbonyl Hydrogenation, and Carbon–Carbon Coupling on Cu</title><author>Chen, Hongwen ; Iyer, Jayendran ; Liu, Yue ; Krebs, Simon ; Deng, Fuli ; Jentys, Andreas ; Searles, Debra J. ; Haider, M. Ali ; Khare, Rachit ; Lercher, Johannes A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a286t-d50e25bd3a56921daef6bcb1f1ff94bdad5d249ed646b5f062f9ceb05fe386693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hongwen</creatorcontrib><creatorcontrib>Iyer, Jayendran</creatorcontrib><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Krebs, Simon</creatorcontrib><creatorcontrib>Deng, Fuli</creatorcontrib><creatorcontrib>Jentys, Andreas</creatorcontrib><creatorcontrib>Searles, Debra J.</creatorcontrib><creatorcontrib>Haider, M. Ali</creatorcontrib><creatorcontrib>Khare, Rachit</creatorcontrib><creatorcontrib>Lercher, Johannes A.</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Hongwen</au><au>Iyer, Jayendran</au><au>Liu, Yue</au><au>Krebs, Simon</au><au>Deng, Fuli</au><au>Jentys, Andreas</au><au>Searles, Debra J.</au><au>Haider, M. Ali</au><au>Khare, Rachit</au><au>Lercher, Johannes A.</au><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of Electrocatalytic H2 Evolution, Carbonyl Hydrogenation, and Carbon–Carbon Coupling on Cu</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2024-05-22</date><risdate>2024</risdate><volume>146</volume><issue>20</issue><spage>13949</spage><epage>13961</epage><pages>13949-13961</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Aqueous-phase electrocatalytic hydrogenation of benzaldehyde on Cu leads not only to benzyl alcohol (the carbonyl hydrogenation product), but Cu also catalyzes carbon–carbon coupling to hydrobenzoin. In the absence of an organic substrate, H2 evolution proceeds via the Volmer–Tafel mechanism on Cu/C, with the Tafel step being rate-determining. In the presence of benzaldehyde, the catalyst surface is primarily covered with the organic substrate, while H* coverage is low. Mechanistically, the first H addition to the carbonyl O of an adsorbed benzaldehyde molecule leads to a surface-bound hydroxy intermediate. The hydroxy intermediate then undergoes a second and rate-determining H addition to its α-C to form benzyl alcohol. The H additions occur predominantly via the proton-coupled electron transfer mechanism. In a parallel reaction, the radical α-C of the hydroxy intermediate attacks the electrophilic carbonyl C of a physisorbed benzaldehyde molecule to form the C–C bond, which is rate-determining. The C–C coupling is accompanied by the protonation of the formed alkoxy radical intermediate, coupled with electron transfer from the surface of Cu, to form hydrobenzoin.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/jacs.4c01911</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2495-1404</orcidid><orcidid>https://orcid.org/0000-0001-8939-0233</orcidid><orcidid>https://orcid.org/0000-0003-1346-8318</orcidid><orcidid>https://orcid.org/0000-0002-8885-5454</orcidid><orcidid>https://orcid.org/0000-0002-1519-5184</orcidid><orcidid>https://orcid.org/0000000189390233</orcidid><orcidid>https://orcid.org/0000000288855454</orcidid><orcidid>https://orcid.org/0000000224951404</orcidid><orcidid>https://orcid.org/0000000313468318</orcidid><orcidid>https://orcid.org/0000000215195184</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2024-05, Vol.146 (20), p.13949-13961 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_2349535 |
source | American Chemical Society Journals |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Mechanism of Electrocatalytic H2 Evolution, Carbonyl Hydrogenation, and Carbon–Carbon Coupling on Cu |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A47%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20Electrocatalytic%20H2%20Evolution,%20Carbonyl%20Hydrogenation,%20and%20Carbon%E2%80%93Carbon%20Coupling%20on%20Cu&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Chen,%20Hongwen&rft.aucorp=Pacific%20Northwest%20National%20Laboratory%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2024-05-22&rft.volume=146&rft.issue=20&rft.spage=13949&rft.epage=13961&rft.pages=13949-13961&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.4c01911&rft_dat=%3Cproquest_osti_%3E3054839746%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3054839746&rft_id=info:pmid/&rfr_iscdi=true |