The crystal chemistry of ZrSi

Reported here is a revised crystal structure of β–ZrSi (TlI/CrB structure type), correcting the atomic position and bond distances. The Si–Si bond length has been modified substantially from 2.723(6) Å to 2.4411(8) Å. The β-ZrSi single crystals were grown from an arc-melted button, and were characte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state chemistry 2022-10, Vol.316
Hauptverfasser: Douglas, Tyra C., Davenport, Matthew A., Elbakry, Eslam M., Allred, Jared M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of solid state chemistry
container_volume 316
creator Douglas, Tyra C.
Davenport, Matthew A.
Elbakry, Eslam M.
Allred, Jared M.
description Reported here is a revised crystal structure of β–ZrSi (TlI/CrB structure type), correcting the atomic position and bond distances. The Si–Si bond length has been modified substantially from 2.723(6) Å to 2.4411(8) Å. The β-ZrSi single crystals were grown from an arc-melted button, and were characterized using single crystal X-ray diffraction. A survey of the TlI/CrB structure type shows that changes to the nomenclature would be useful, separating it into four chemically distinct subtypes: TlI, CrB, CaSi, and ThCo. β–ZrSi is an example of the CaSi subtype. α-ZrSi crystallizes in the related FeB structure type, which is also divided here into the subtypes FeB, CeSi, and YNi. The effect of electron count on the relative phase stabilities of the CaSi and CeSi subtypes is rationalized with the aid of the Zintl concept and electronic structure calculations in the Linear Muffin-Tin Orbital (LMTO) basis.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2349492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2349492</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23494923</originalsourceid><addsrcrecordid>eNpjYuA0NLA01TU3MotgYeA0MDAy0jUxtTTjYOAqLs4yMDA0NLUw4WSQDclIVUguqiwuScxRSM5Izc0sLimqVMhPU4gqCs7kYWBNS8wpTuWF0twMSm6uIc4euvnFJZnxxcmZJanJGcn5eXmpySXxRsYmliaWRsZEKQIA1bItNQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The crystal chemistry of ZrSi</title><source>Access via ScienceDirect (Elsevier)</source><creator>Douglas, Tyra C. ; Davenport, Matthew A. ; Elbakry, Eslam M. ; Allred, Jared M.</creator><creatorcontrib>Douglas, Tyra C. ; Davenport, Matthew A. ; Elbakry, Eslam M. ; Allred, Jared M. ; Univ. of Alabama, Tuscaloosa, AL (United States)</creatorcontrib><description>Reported here is a revised crystal structure of β–ZrSi (TlI/CrB structure type), correcting the atomic position and bond distances. The Si–Si bond length has been modified substantially from 2.723(6) Å to 2.4411(8) Å. The β-ZrSi single crystals were grown from an arc-melted button, and were characterized using single crystal X-ray diffraction. A survey of the TlI/CrB structure type shows that changes to the nomenclature would be useful, separating it into four chemically distinct subtypes: TlI, CrB, CaSi, and ThCo. β–ZrSi is an example of the CaSi subtype. α-ZrSi crystallizes in the related FeB structure type, which is also divided here into the subtypes FeB, CeSi, and YNi. The effect of electron count on the relative phase stabilities of the CaSi and CeSi subtypes is rationalized with the aid of the Zintl concept and electronic structure calculations in the Linear Muffin-Tin Orbital (LMTO) basis.</description><identifier>ISSN: 0022-4596</identifier><identifier>EISSN: 1095-726X</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>CrB ; crystal chemistry ; crystal structure ; electronic structure calculations ; FeB ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; metallic bonding ; stability trends ; structure types ; ZrSi</subject><ispartof>Journal of solid state chemistry, 2022-10, Vol.316</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000153233711 ; 0000000211426846 ; 000000025953300X ; 0000000326726961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2349492$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglas, Tyra C.</creatorcontrib><creatorcontrib>Davenport, Matthew A.</creatorcontrib><creatorcontrib>Elbakry, Eslam M.</creatorcontrib><creatorcontrib>Allred, Jared M.</creatorcontrib><creatorcontrib>Univ. of Alabama, Tuscaloosa, AL (United States)</creatorcontrib><title>The crystal chemistry of ZrSi</title><title>Journal of solid state chemistry</title><description>Reported here is a revised crystal structure of β–ZrSi (TlI/CrB structure type), correcting the atomic position and bond distances. The Si–Si bond length has been modified substantially from 2.723(6) Å to 2.4411(8) Å. The β-ZrSi single crystals were grown from an arc-melted button, and were characterized using single crystal X-ray diffraction. A survey of the TlI/CrB structure type shows that changes to the nomenclature would be useful, separating it into four chemically distinct subtypes: TlI, CrB, CaSi, and ThCo. β–ZrSi is an example of the CaSi subtype. α-ZrSi crystallizes in the related FeB structure type, which is also divided here into the subtypes FeB, CeSi, and YNi. The effect of electron count on the relative phase stabilities of the CaSi and CeSi subtypes is rationalized with the aid of the Zintl concept and electronic structure calculations in the Linear Muffin-Tin Orbital (LMTO) basis.</description><subject>CrB</subject><subject>crystal chemistry</subject><subject>crystal structure</subject><subject>electronic structure calculations</subject><subject>FeB</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>metallic bonding</subject><subject>stability trends</subject><subject>structure types</subject><subject>ZrSi</subject><issn>0022-4596</issn><issn>1095-726X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NLA01TU3MotgYeA0MDAy0jUxtTTjYOAqLs4yMDA0NLUw4WSQDclIVUguqiwuScxRSM5Izc0sLimqVMhPU4gqCs7kYWBNS8wpTuWF0twMSm6uIc4euvnFJZnxxcmZJanJGcn5eXmpySXxRsYmliaWRsZEKQIA1bItNQ</recordid><startdate>20221004</startdate><enddate>20221004</enddate><creator>Douglas, Tyra C.</creator><creator>Davenport, Matthew A.</creator><creator>Elbakry, Eslam M.</creator><creator>Allred, Jared M.</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000153233711</orcidid><orcidid>https://orcid.org/0000000211426846</orcidid><orcidid>https://orcid.org/000000025953300X</orcidid><orcidid>https://orcid.org/0000000326726961</orcidid></search><sort><creationdate>20221004</creationdate><title>The crystal chemistry of ZrSi</title><author>Douglas, Tyra C. ; Davenport, Matthew A. ; Elbakry, Eslam M. ; Allred, Jared M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23494923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CrB</topic><topic>crystal chemistry</topic><topic>crystal structure</topic><topic>electronic structure calculations</topic><topic>FeB</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>metallic bonding</topic><topic>stability trends</topic><topic>structure types</topic><topic>ZrSi</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglas, Tyra C.</creatorcontrib><creatorcontrib>Davenport, Matthew A.</creatorcontrib><creatorcontrib>Elbakry, Eslam M.</creatorcontrib><creatorcontrib>Allred, Jared M.</creatorcontrib><creatorcontrib>Univ. of Alabama, Tuscaloosa, AL (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of solid state chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglas, Tyra C.</au><au>Davenport, Matthew A.</au><au>Elbakry, Eslam M.</au><au>Allred, Jared M.</au><aucorp>Univ. of Alabama, Tuscaloosa, AL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The crystal chemistry of ZrSi</atitle><jtitle>Journal of solid state chemistry</jtitle><date>2022-10-04</date><risdate>2022</risdate><volume>316</volume><issn>0022-4596</issn><eissn>1095-726X</eissn><abstract>Reported here is a revised crystal structure of β–ZrSi (TlI/CrB structure type), correcting the atomic position and bond distances. The Si–Si bond length has been modified substantially from 2.723(6) Å to 2.4411(8) Å. The β-ZrSi single crystals were grown from an arc-melted button, and were characterized using single crystal X-ray diffraction. A survey of the TlI/CrB structure type shows that changes to the nomenclature would be useful, separating it into four chemically distinct subtypes: TlI, CrB, CaSi, and ThCo. β–ZrSi is an example of the CaSi subtype. α-ZrSi crystallizes in the related FeB structure type, which is also divided here into the subtypes FeB, CeSi, and YNi. The effect of electron count on the relative phase stabilities of the CaSi and CeSi subtypes is rationalized with the aid of the Zintl concept and electronic structure calculations in the Linear Muffin-Tin Orbital (LMTO) basis.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000153233711</orcidid><orcidid>https://orcid.org/0000000211426846</orcidid><orcidid>https://orcid.org/000000025953300X</orcidid><orcidid>https://orcid.org/0000000326726961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-4596
ispartof Journal of solid state chemistry, 2022-10, Vol.316
issn 0022-4596
1095-726X
language eng
recordid cdi_osti_scitechconnect_2349492
source Access via ScienceDirect (Elsevier)
subjects CrB
crystal chemistry
crystal structure
electronic structure calculations
FeB
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
metallic bonding
stability trends
structure types
ZrSi
title The crystal chemistry of ZrSi
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A21%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20crystal%20chemistry%20of%20ZrSi&rft.jtitle=Journal%20of%20solid%20state%20chemistry&rft.au=Douglas,%20Tyra%20C.&rft.aucorp=Univ.%20of%20Alabama,%20Tuscaloosa,%20AL%20(United%20States)&rft.date=2022-10-04&rft.volume=316&rft.issn=0022-4596&rft.eissn=1095-726X&rft_id=info:doi/&rft_dat=%3Costi%3E2349492%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true