A PCB-Embedded 1.2 kV SiC MOSFET Half-Bridge Package for a 22 kW AC-DC Converter
This article presents the design and analysis of a double-side-cooled printed circuit board (PCB) embedded silicon carbide (SiC) MOSFET half-bridge package with low loop inductances and an integrated gate driver. The 1.2 kV SiC MOSFET dies used in the half-bridge package are embedded in the PCB usin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2022-10, Vol.37 (10), p.11927-11936 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11936 |
---|---|
container_issue | 10 |
container_start_page | 11927 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Knoll, Jack S. Son, Gibong DiMarino, Christina Li, Qiang Stahr, Hannes Morianz, Mike |
description | This article presents the design and analysis of a double-side-cooled printed circuit board (PCB) embedded silicon carbide (SiC) MOSFET half-bridge package with low loop inductances and an integrated gate driver. The 1.2 kV SiC MOSFET dies used in the half-bridge package are embedded in the PCB using AT&S's patented technique. The dies are cooled and electrically connected to traces in the PCB through copper-filled microvias. The design methodology accounts for both electrical and thermal performance, limiting the power-loop inductance to 2.3 nH and the maximum package temperature to less than the 175 °C limit. The integration of the gate drive circuitry allows for a high power density and 2.2 nH gate-loop inductances. At 0.12 K/W, the measured junction-to-case thermal resistance with double-sided cooling is 57% lower than that of a TO-247 package. Under similar operating conditions, the PCB-embedded half-bridge package also achieves a 5.6 times lower voltage overshoot and a 0.5% higher peak efficiency than a TO-247-based half-bridge. This article reports the first demonstration of PCB-embedded 1.2 kV SiC MOSFET packages in buck, boost, and ac-dc converters. The prototype three-phase ac-dc converter for an electric vehicle on-board charger is composed of six PCB-embedded half-bridge packages and achieves an efficiency of 98.2% and a power density of 182 W/in 3 . |
doi_str_mv | 10.1109/TPEL.2022.3177369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_osti_scitechconnect_2346114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9780169</ieee_id><sourcerecordid>2679398050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-96593af2de26718c933311fbb1313f9ad0cb3a131f4546e5b1d3fb0b8b1134183</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwAxAXC84JXjsP-9iGQpGKGqkFjpbt2JC-Ak6KxL_HVSpOo9V-M7sahK6BxABE3C_LySymhNKYQZ6zTJygAYgEIgIkP0UDwnkacSHYObpo2xUhkKQEBqgc4bIYR5OttlVlKwwxxes3vKgL_DJfPE6WeKo2Lhr7uvqwuFRmrYK6xmOFaUDf8aiIHgpcNLsf6zvrL9GZU5vWXh11iF5DSjGNZvOn52I0iwwVrItElgqmHK0szXLgRjDGAJzWwIA5oSpiNFNhcEmaZDbVUDGnieYagCXA2RDd9rlN29WyNXVnzadpdjtrOklZkgEkAbrroS_ffO9t28lVs_e78JcMZwUTnKQkUNBTxjdt662TX77eKv8rgchDu_LQrjy0K4_tBs9N76mttf-8yDmBsP0DtR5vRQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679398050</pqid></control><display><type>article</type><title>A PCB-Embedded 1.2 kV SiC MOSFET Half-Bridge Package for a 22 kW AC-DC Converter</title><source>IEEE Electronic Library (IEL)</source><creator>Knoll, Jack S. ; Son, Gibong ; DiMarino, Christina ; Li, Qiang ; Stahr, Hannes ; Morianz, Mike</creator><creatorcontrib>Knoll, Jack S. ; Son, Gibong ; DiMarino, Christina ; Li, Qiang ; Stahr, Hannes ; Morianz, Mike ; Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><description>This article presents the design and analysis of a double-side-cooled printed circuit board (PCB) embedded silicon carbide (SiC) MOSFET half-bridge package with low loop inductances and an integrated gate driver. The 1.2 kV SiC MOSFET dies used in the half-bridge package are embedded in the PCB using AT&S's patented technique. The dies are cooled and electrically connected to traces in the PCB through copper-filled microvias. The design methodology accounts for both electrical and thermal performance, limiting the power-loop inductance to 2.3 nH and the maximum package temperature to less than the 175 °C limit. The integration of the gate drive circuitry allows for a high power density and 2.2 nH gate-loop inductances. At 0.12 K/W, the measured junction-to-case thermal resistance with double-sided cooling is 57% lower than that of a TO-247 package. Under similar operating conditions, the PCB-embedded half-bridge package also achieves a 5.6 times lower voltage overshoot and a 0.5% higher peak efficiency than a TO-247-based half-bridge. This article reports the first demonstration of PCB-embedded 1.2 kV SiC MOSFET packages in buck, boost, and ac-dc converters. The prototype three-phase ac-dc converter for an electric vehicle on-board charger is composed of six PCB-embedded half-bridge packages and achieves an efficiency of 98.2% and a power density of 182 W/in 3 .</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2022.3177369</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>AC-DC converters ; Ac–dc converter ; Circuit boards ; Circuit design ; Circuits ; Cooling ; Copper ; electric vehicle ; Electric vehicles ; Electronic packaging thermal management ; ENGINEERING ; high density integration ; Inductance ; Logic gates ; MOSFET ; MOSFETs ; on-board charger ; Packages ; PCB embedding ; Printed circuits ; SiC MOSFET ; Silicon carbide ; Thermal management ; Thermal resistance</subject><ispartof>IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.11927-11936</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-96593af2de26718c933311fbb1313f9ad0cb3a131f4546e5b1d3fb0b8b1134183</citedby><cites>FETCH-LOGICAL-c293t-96593af2de26718c933311fbb1313f9ad0cb3a131f4546e5b1d3fb0b8b1134183</cites><orcidid>0000-0002-5378-1424 ; 0000-0002-7864-1719 ; 0000-0001-7369-649X ; 0000-0003-4226-172X ; 0000000278641719 ; 000000034226172X ; 000000017369649X ; 0000000253781424</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9780169$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9780169$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/2346114$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Knoll, Jack S.</creatorcontrib><creatorcontrib>Son, Gibong</creatorcontrib><creatorcontrib>DiMarino, Christina</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Stahr, Hannes</creatorcontrib><creatorcontrib>Morianz, Mike</creatorcontrib><creatorcontrib>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><title>A PCB-Embedded 1.2 kV SiC MOSFET Half-Bridge Package for a 22 kW AC-DC Converter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>This article presents the design and analysis of a double-side-cooled printed circuit board (PCB) embedded silicon carbide (SiC) MOSFET half-bridge package with low loop inductances and an integrated gate driver. The 1.2 kV SiC MOSFET dies used in the half-bridge package are embedded in the PCB using AT&S's patented technique. The dies are cooled and electrically connected to traces in the PCB through copper-filled microvias. The design methodology accounts for both electrical and thermal performance, limiting the power-loop inductance to 2.3 nH and the maximum package temperature to less than the 175 °C limit. The integration of the gate drive circuitry allows for a high power density and 2.2 nH gate-loop inductances. At 0.12 K/W, the measured junction-to-case thermal resistance with double-sided cooling is 57% lower than that of a TO-247 package. Under similar operating conditions, the PCB-embedded half-bridge package also achieves a 5.6 times lower voltage overshoot and a 0.5% higher peak efficiency than a TO-247-based half-bridge. This article reports the first demonstration of PCB-embedded 1.2 kV SiC MOSFET packages in buck, boost, and ac-dc converters. The prototype three-phase ac-dc converter for an electric vehicle on-board charger is composed of six PCB-embedded half-bridge packages and achieves an efficiency of 98.2% and a power density of 182 W/in 3 .</description><subject>AC-DC converters</subject><subject>Ac–dc converter</subject><subject>Circuit boards</subject><subject>Circuit design</subject><subject>Circuits</subject><subject>Cooling</subject><subject>Copper</subject><subject>electric vehicle</subject><subject>Electric vehicles</subject><subject>Electronic packaging thermal management</subject><subject>ENGINEERING</subject><subject>high density integration</subject><subject>Inductance</subject><subject>Logic gates</subject><subject>MOSFET</subject><subject>MOSFETs</subject><subject>on-board charger</subject><subject>Packages</subject><subject>PCB embedding</subject><subject>Printed circuits</subject><subject>SiC MOSFET</subject><subject>Silicon carbide</subject><subject>Thermal management</subject><subject>Thermal resistance</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwAxAXC84JXjsP-9iGQpGKGqkFjpbt2JC-Ak6KxL_HVSpOo9V-M7sahK6BxABE3C_LySymhNKYQZ6zTJygAYgEIgIkP0UDwnkacSHYObpo2xUhkKQEBqgc4bIYR5OttlVlKwwxxes3vKgL_DJfPE6WeKo2Lhr7uvqwuFRmrYK6xmOFaUDf8aiIHgpcNLsf6zvrL9GZU5vWXh11iF5DSjGNZvOn52I0iwwVrItElgqmHK0szXLgRjDGAJzWwIA5oSpiNFNhcEmaZDbVUDGnieYagCXA2RDd9rlN29WyNXVnzadpdjtrOklZkgEkAbrroS_ffO9t28lVs_e78JcMZwUTnKQkUNBTxjdt662TX77eKv8rgchDu_LQrjy0K4_tBs9N76mttf-8yDmBsP0DtR5vRQ</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Knoll, Jack S.</creator><creator>Son, Gibong</creator><creator>DiMarino, Christina</creator><creator>Li, Qiang</creator><creator>Stahr, Hannes</creator><creator>Morianz, Mike</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5378-1424</orcidid><orcidid>https://orcid.org/0000-0002-7864-1719</orcidid><orcidid>https://orcid.org/0000-0001-7369-649X</orcidid><orcidid>https://orcid.org/0000-0003-4226-172X</orcidid><orcidid>https://orcid.org/0000000278641719</orcidid><orcidid>https://orcid.org/000000034226172X</orcidid><orcidid>https://orcid.org/000000017369649X</orcidid><orcidid>https://orcid.org/0000000253781424</orcidid></search><sort><creationdate>20221001</creationdate><title>A PCB-Embedded 1.2 kV SiC MOSFET Half-Bridge Package for a 22 kW AC-DC Converter</title><author>Knoll, Jack S. ; Son, Gibong ; DiMarino, Christina ; Li, Qiang ; Stahr, Hannes ; Morianz, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-96593af2de26718c933311fbb1313f9ad0cb3a131f4546e5b1d3fb0b8b1134183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>AC-DC converters</topic><topic>Ac–dc converter</topic><topic>Circuit boards</topic><topic>Circuit design</topic><topic>Circuits</topic><topic>Cooling</topic><topic>Copper</topic><topic>electric vehicle</topic><topic>Electric vehicles</topic><topic>Electronic packaging thermal management</topic><topic>ENGINEERING</topic><topic>high density integration</topic><topic>Inductance</topic><topic>Logic gates</topic><topic>MOSFET</topic><topic>MOSFETs</topic><topic>on-board charger</topic><topic>Packages</topic><topic>PCB embedding</topic><topic>Printed circuits</topic><topic>SiC MOSFET</topic><topic>Silicon carbide</topic><topic>Thermal management</topic><topic>Thermal resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knoll, Jack S.</creatorcontrib><creatorcontrib>Son, Gibong</creatorcontrib><creatorcontrib>DiMarino, Christina</creatorcontrib><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Stahr, Hannes</creatorcontrib><creatorcontrib>Morianz, Mike</creatorcontrib><creatorcontrib>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knoll, Jack S.</au><au>Son, Gibong</au><au>DiMarino, Christina</au><au>Li, Qiang</au><au>Stahr, Hannes</au><au>Morianz, Mike</au><aucorp>Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PCB-Embedded 1.2 kV SiC MOSFET Half-Bridge Package for a 22 kW AC-DC Converter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>37</volume><issue>10</issue><spage>11927</spage><epage>11936</epage><pages>11927-11936</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>This article presents the design and analysis of a double-side-cooled printed circuit board (PCB) embedded silicon carbide (SiC) MOSFET half-bridge package with low loop inductances and an integrated gate driver. The 1.2 kV SiC MOSFET dies used in the half-bridge package are embedded in the PCB using AT&S's patented technique. The dies are cooled and electrically connected to traces in the PCB through copper-filled microvias. The design methodology accounts for both electrical and thermal performance, limiting the power-loop inductance to 2.3 nH and the maximum package temperature to less than the 175 °C limit. The integration of the gate drive circuitry allows for a high power density and 2.2 nH gate-loop inductances. At 0.12 K/W, the measured junction-to-case thermal resistance with double-sided cooling is 57% lower than that of a TO-247 package. Under similar operating conditions, the PCB-embedded half-bridge package also achieves a 5.6 times lower voltage overshoot and a 0.5% higher peak efficiency than a TO-247-based half-bridge. This article reports the first demonstration of PCB-embedded 1.2 kV SiC MOSFET packages in buck, boost, and ac-dc converters. The prototype three-phase ac-dc converter for an electric vehicle on-board charger is composed of six PCB-embedded half-bridge packages and achieves an efficiency of 98.2% and a power density of 182 W/in 3 .</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2022.3177369</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5378-1424</orcidid><orcidid>https://orcid.org/0000-0002-7864-1719</orcidid><orcidid>https://orcid.org/0000-0001-7369-649X</orcidid><orcidid>https://orcid.org/0000-0003-4226-172X</orcidid><orcidid>https://orcid.org/0000000278641719</orcidid><orcidid>https://orcid.org/000000034226172X</orcidid><orcidid>https://orcid.org/000000017369649X</orcidid><orcidid>https://orcid.org/0000000253781424</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-10, Vol.37 (10), p.11927-11936 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_osti_scitechconnect_2346114 |
source | IEEE Electronic Library (IEL) |
subjects | AC-DC converters Ac–dc converter Circuit boards Circuit design Circuits Cooling Copper electric vehicle Electric vehicles Electronic packaging thermal management ENGINEERING high density integration Inductance Logic gates MOSFET MOSFETs on-board charger Packages PCB embedding Printed circuits SiC MOSFET Silicon carbide Thermal management Thermal resistance |
title | A PCB-Embedded 1.2 kV SiC MOSFET Half-Bridge Package for a 22 kW AC-DC Converter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A16%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PCB-Embedded%201.2%20kV%20SiC%20MOSFET%20Half-Bridge%20Package%20for%20a%2022%20kW%20AC-DC%20Converter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Knoll,%20Jack%20S.&rft.aucorp=Virginia%20Polytechnic%20Institute%20and%20State%20University%20(Virginia%20Tech),%20Blacksburg,%20VA%20(United%20States)&rft.date=2022-10-01&rft.volume=37&rft.issue=10&rft.spage=11927&rft.epage=11936&rft.pages=11927-11936&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2022.3177369&rft_dat=%3Cproquest_RIE%3E2679398050%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679398050&rft_id=info:pmid/&rft_ieee_id=9780169&rfr_iscdi=true |