Theory-guided design of duplex-phase multi-principal-element alloys
Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were u...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2024-06, Vol.272, p.119952, Article 119952 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 119952 |
container_title | Acta materialia |
container_volume | 272 |
creator | Singh, Prashant Johnson, Duane D. Tiarks, Jordan White, Emma M.H. Kustas, Andrew B. Pegues, Jonathan W. Jones, Morgan R. Lim, Hannah DelRio, Frank W. Carroll, Jay D. Ouyang, Gaoyuan Abere, Michael J. Naorem, Rameshwari Huang, Hailong Riedemann, Trevor M. Kotula, Paul G. Anderson, Iver E. Argibay, Nicolas |
description | Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2024.119952 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645424003045</els_id><sourcerecordid>S1359645424003045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5Ai7g5-xskJoYqXVIlLOVvGWbeu8pLtIPrvSZTeOe0eZmZ3PoTuKckpocXjMTc2mdaknBEmckqrSrILtKKl4pgJyS-nncsKF0KKa3QT45EQypQgK7TZHaAPJ7wffQ11VkP0-y7rXVaPQwO_eDiYCFk7NsnjIfjO-sE0GBpooUuZaZr-FG_RlTNNhLvzXKOv15fd5h1vP98-Ns9bbDkvEjaEWlIyphRV1FUWJJRUSABGVSmV5cx9CyiUM6IsJTHKWUZMbVghKiql4mv0sOT2MXkdrU9gD7bvOrBJMy5kxckkkovIhj7GAE5Pb7cmnDQlesalj_qMS8-49IJr8j0tPpga_HgI8wHoLNQ-zPl17_9J-AMr-nVj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory-guided design of duplex-phase multi-principal-element alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Singh, Prashant ; Johnson, Duane D. ; Tiarks, Jordan ; White, Emma M.H. ; Kustas, Andrew B. ; Pegues, Jonathan W. ; Jones, Morgan R. ; Lim, Hannah ; DelRio, Frank W. ; Carroll, Jay D. ; Ouyang, Gaoyuan ; Abere, Michael J. ; Naorem, Rameshwari ; Huang, Hailong ; Riedemann, Trevor M. ; Kotula, Paul G. ; Anderson, Iver E. ; Argibay, Nicolas</creator><creatorcontrib>Singh, Prashant ; Johnson, Duane D. ; Tiarks, Jordan ; White, Emma M.H. ; Kustas, Andrew B. ; Pegues, Jonathan W. ; Jones, Morgan R. ; Lim, Hannah ; DelRio, Frank W. ; Carroll, Jay D. ; Ouyang, Gaoyuan ; Abere, Michael J. ; Naorem, Rameshwari ; Huang, Hailong ; Riedemann, Trevor M. ; Kotula, Paul G. ; Anderson, Iver E. ; Argibay, Nicolas ; Ames Laboratory (AMES), Ames, IA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2024.119952</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>additive manufacturing ; density-functional theory ; DFT ; duplex microstructure ; HEAs ; high-entropy alloys ; MATERIALS SCIENCE ; MPEAs ; Multi-principal-element alloys ; multimodal ; nanostructure ; phase equilibrium ; theory-guided</subject><ispartof>Acta materialia, 2024-06, Vol.272, p.119952, Article 119952</ispartof><rights>2024 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</citedby><cites>FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</cites><orcidid>0000-0002-6657-562X ; 0000-0002-6473-7568 ; 0000-0002-0842-6474 ; 0000-0003-1727-8220 ; 0000-0003-0066-6374 ; 0000-0002-5218-7597 ; 0000-0003-0794-7283 ; 0000-0003-1527-9713 ; 0000-0002-7521-2759 ; 0000-0002-3901-6478 ; 0000-0002-0246-6256 ; 0000-0001-7349-7597 ; 0000000315279713 ; 0000000239016478 ; 0000000275212759 ; 0000000202466256 ; 000000026657562X ; 0000000173497597 ; 0000000317278220 ; 0000000208426474 ; 0000000264737568 ; 0000000252187597 ; 0000000307947283 ; 0000000300666374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645424003045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2345930$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Tiarks, Jordan</creatorcontrib><creatorcontrib>White, Emma M.H.</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Lim, Hannah</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Carroll, Jay D.</creatorcontrib><creatorcontrib>Ouyang, Gaoyuan</creatorcontrib><creatorcontrib>Abere, Michael J.</creatorcontrib><creatorcontrib>Naorem, Rameshwari</creatorcontrib><creatorcontrib>Huang, Hailong</creatorcontrib><creatorcontrib>Riedemann, Trevor M.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Anderson, Iver E.</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Theory-guided design of duplex-phase multi-principal-element alloys</title><title>Acta materialia</title><description>Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.
[Display omitted]</description><subject>additive manufacturing</subject><subject>density-functional theory</subject><subject>DFT</subject><subject>duplex microstructure</subject><subject>HEAs</subject><subject>high-entropy alloys</subject><subject>MATERIALS SCIENCE</subject><subject>MPEAs</subject><subject>Multi-principal-element alloys</subject><subject>multimodal</subject><subject>nanostructure</subject><subject>phase equilibrium</subject><subject>theory-guided</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5Ai7g5-xskJoYqXVIlLOVvGWbeu8pLtIPrvSZTeOe0eZmZ3PoTuKckpocXjMTc2mdaknBEmckqrSrILtKKl4pgJyS-nncsKF0KKa3QT45EQypQgK7TZHaAPJ7wffQ11VkP0-y7rXVaPQwO_eDiYCFk7NsnjIfjO-sE0GBpooUuZaZr-FG_RlTNNhLvzXKOv15fd5h1vP98-Ns9bbDkvEjaEWlIyphRV1FUWJJRUSABGVSmV5cx9CyiUM6IsJTHKWUZMbVghKiql4mv0sOT2MXkdrU9gD7bvOrBJMy5kxckkkovIhj7GAE5Pb7cmnDQlesalj_qMS8-49IJr8j0tPpga_HgI8wHoLNQ-zPl17_9J-AMr-nVj</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Singh, Prashant</creator><creator>Johnson, Duane D.</creator><creator>Tiarks, Jordan</creator><creator>White, Emma M.H.</creator><creator>Kustas, Andrew B.</creator><creator>Pegues, Jonathan W.</creator><creator>Jones, Morgan R.</creator><creator>Lim, Hannah</creator><creator>DelRio, Frank W.</creator><creator>Carroll, Jay D.</creator><creator>Ouyang, Gaoyuan</creator><creator>Abere, Michael J.</creator><creator>Naorem, Rameshwari</creator><creator>Huang, Hailong</creator><creator>Riedemann, Trevor M.</creator><creator>Kotula, Paul G.</creator><creator>Anderson, Iver E.</creator><creator>Argibay, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6657-562X</orcidid><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid><orcidid>https://orcid.org/0000-0002-0842-6474</orcidid><orcidid>https://orcid.org/0000-0003-1727-8220</orcidid><orcidid>https://orcid.org/0000-0003-0066-6374</orcidid><orcidid>https://orcid.org/0000-0002-5218-7597</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0003-1527-9713</orcidid><orcidid>https://orcid.org/0000-0002-7521-2759</orcidid><orcidid>https://orcid.org/0000-0002-3901-6478</orcidid><orcidid>https://orcid.org/0000-0002-0246-6256</orcidid><orcidid>https://orcid.org/0000-0001-7349-7597</orcidid><orcidid>https://orcid.org/0000000315279713</orcidid><orcidid>https://orcid.org/0000000239016478</orcidid><orcidid>https://orcid.org/0000000275212759</orcidid><orcidid>https://orcid.org/0000000202466256</orcidid><orcidid>https://orcid.org/000000026657562X</orcidid><orcidid>https://orcid.org/0000000173497597</orcidid><orcidid>https://orcid.org/0000000317278220</orcidid><orcidid>https://orcid.org/0000000208426474</orcidid><orcidid>https://orcid.org/0000000264737568</orcidid><orcidid>https://orcid.org/0000000252187597</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><orcidid>https://orcid.org/0000000300666374</orcidid></search><sort><creationdate>20240615</creationdate><title>Theory-guided design of duplex-phase multi-principal-element alloys</title><author>Singh, Prashant ; Johnson, Duane D. ; Tiarks, Jordan ; White, Emma M.H. ; Kustas, Andrew B. ; Pegues, Jonathan W. ; Jones, Morgan R. ; Lim, Hannah ; DelRio, Frank W. ; Carroll, Jay D. ; Ouyang, Gaoyuan ; Abere, Michael J. ; Naorem, Rameshwari ; Huang, Hailong ; Riedemann, Trevor M. ; Kotula, Paul G. ; Anderson, Iver E. ; Argibay, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive manufacturing</topic><topic>density-functional theory</topic><topic>DFT</topic><topic>duplex microstructure</topic><topic>HEAs</topic><topic>high-entropy alloys</topic><topic>MATERIALS SCIENCE</topic><topic>MPEAs</topic><topic>Multi-principal-element alloys</topic><topic>multimodal</topic><topic>nanostructure</topic><topic>phase equilibrium</topic><topic>theory-guided</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Tiarks, Jordan</creatorcontrib><creatorcontrib>White, Emma M.H.</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Lim, Hannah</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Carroll, Jay D.</creatorcontrib><creatorcontrib>Ouyang, Gaoyuan</creatorcontrib><creatorcontrib>Abere, Michael J.</creatorcontrib><creatorcontrib>Naorem, Rameshwari</creatorcontrib><creatorcontrib>Huang, Hailong</creatorcontrib><creatorcontrib>Riedemann, Trevor M.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Anderson, Iver E.</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prashant</au><au>Johnson, Duane D.</au><au>Tiarks, Jordan</au><au>White, Emma M.H.</au><au>Kustas, Andrew B.</au><au>Pegues, Jonathan W.</au><au>Jones, Morgan R.</au><au>Lim, Hannah</au><au>DelRio, Frank W.</au><au>Carroll, Jay D.</au><au>Ouyang, Gaoyuan</au><au>Abere, Michael J.</au><au>Naorem, Rameshwari</au><au>Huang, Hailong</au><au>Riedemann, Trevor M.</au><au>Kotula, Paul G.</au><au>Anderson, Iver E.</au><au>Argibay, Nicolas</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory-guided design of duplex-phase multi-principal-element alloys</atitle><jtitle>Acta materialia</jtitle><date>2024-06-15</date><risdate>2024</risdate><volume>272</volume><spage>119952</spage><pages>119952-</pages><artnum>119952</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2024.119952</doi><orcidid>https://orcid.org/0000-0002-6657-562X</orcidid><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid><orcidid>https://orcid.org/0000-0002-0842-6474</orcidid><orcidid>https://orcid.org/0000-0003-1727-8220</orcidid><orcidid>https://orcid.org/0000-0003-0066-6374</orcidid><orcidid>https://orcid.org/0000-0002-5218-7597</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0003-1527-9713</orcidid><orcidid>https://orcid.org/0000-0002-7521-2759</orcidid><orcidid>https://orcid.org/0000-0002-3901-6478</orcidid><orcidid>https://orcid.org/0000-0002-0246-6256</orcidid><orcidid>https://orcid.org/0000-0001-7349-7597</orcidid><orcidid>https://orcid.org/0000000315279713</orcidid><orcidid>https://orcid.org/0000000239016478</orcidid><orcidid>https://orcid.org/0000000275212759</orcidid><orcidid>https://orcid.org/0000000202466256</orcidid><orcidid>https://orcid.org/000000026657562X</orcidid><orcidid>https://orcid.org/0000000173497597</orcidid><orcidid>https://orcid.org/0000000317278220</orcidid><orcidid>https://orcid.org/0000000208426474</orcidid><orcidid>https://orcid.org/0000000264737568</orcidid><orcidid>https://orcid.org/0000000252187597</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><orcidid>https://orcid.org/0000000300666374</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2024-06, Vol.272, p.119952, Article 119952 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_2345930 |
source | Elsevier ScienceDirect Journals Complete |
subjects | additive manufacturing density-functional theory DFT duplex microstructure HEAs high-entropy alloys MATERIALS SCIENCE MPEAs Multi-principal-element alloys multimodal nanostructure phase equilibrium theory-guided |
title | Theory-guided design of duplex-phase multi-principal-element alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory-guided%20design%20of%20duplex-phase%20multi-principal-element%20alloys&rft.jtitle=Acta%20materialia&rft.au=Singh,%20Prashant&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2024-06-15&rft.volume=272&rft.spage=119952&rft.pages=119952-&rft.artnum=119952&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2024.119952&rft_dat=%3Celsevier_osti_%3ES1359645424003045%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645424003045&rfr_iscdi=true |