Theory-guided design of duplex-phase multi-principal-element alloys

Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2024-06, Vol.272, p.119952, Article 119952
Hauptverfasser: Singh, Prashant, Johnson, Duane D., Tiarks, Jordan, White, Emma M.H., Kustas, Andrew B., Pegues, Jonathan W., Jones, Morgan R., Lim, Hannah, DelRio, Frank W., Carroll, Jay D., Ouyang, Gaoyuan, Abere, Michael J., Naorem, Rameshwari, Huang, Hailong, Riedemann, Trevor M., Kotula, Paul G., Anderson, Iver E., Argibay, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 119952
container_title Acta materialia
container_volume 272
creator Singh, Prashant
Johnson, Duane D.
Tiarks, Jordan
White, Emma M.H.
Kustas, Andrew B.
Pegues, Jonathan W.
Jones, Morgan R.
Lim, Hannah
DelRio, Frank W.
Carroll, Jay D.
Ouyang, Gaoyuan
Abere, Michael J.
Naorem, Rameshwari
Huang, Hailong
Riedemann, Trevor M.
Kotula, Paul G.
Anderson, Iver E.
Argibay, Nicolas
description Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions. [Display omitted]
doi_str_mv 10.1016/j.actamat.2024.119952
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645424003045</els_id><sourcerecordid>S1359645424003045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EEqXwE5Ai7g5-xskJoYqXVIlLOVvGWbeu8pLtIPrvSZTeOe0eZmZ3PoTuKckpocXjMTc2mdaknBEmckqrSrILtKKl4pgJyS-nncsKF0KKa3QT45EQypQgK7TZHaAPJ7wffQ11VkP0-y7rXVaPQwO_eDiYCFk7NsnjIfjO-sE0GBpooUuZaZr-FG_RlTNNhLvzXKOv15fd5h1vP98-Ns9bbDkvEjaEWlIyphRV1FUWJJRUSABGVSmV5cx9CyiUM6IsJTHKWUZMbVghKiql4mv0sOT2MXkdrU9gD7bvOrBJMy5kxckkkovIhj7GAE5Pb7cmnDQlesalj_qMS8-49IJr8j0tPpga_HgI8wHoLNQ-zPl17_9J-AMr-nVj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Theory-guided design of duplex-phase multi-principal-element alloys</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Singh, Prashant ; Johnson, Duane D. ; Tiarks, Jordan ; White, Emma M.H. ; Kustas, Andrew B. ; Pegues, Jonathan W. ; Jones, Morgan R. ; Lim, Hannah ; DelRio, Frank W. ; Carroll, Jay D. ; Ouyang, Gaoyuan ; Abere, Michael J. ; Naorem, Rameshwari ; Huang, Hailong ; Riedemann, Trevor M. ; Kotula, Paul G. ; Anderson, Iver E. ; Argibay, Nicolas</creator><creatorcontrib>Singh, Prashant ; Johnson, Duane D. ; Tiarks, Jordan ; White, Emma M.H. ; Kustas, Andrew B. ; Pegues, Jonathan W. ; Jones, Morgan R. ; Lim, Hannah ; DelRio, Frank W. ; Carroll, Jay D. ; Ouyang, Gaoyuan ; Abere, Michael J. ; Naorem, Rameshwari ; Huang, Hailong ; Riedemann, Trevor M. ; Kotula, Paul G. ; Anderson, Iver E. ; Argibay, Nicolas ; Ames Laboratory (AMES), Ames, IA (United States) ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions. [Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2024.119952</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>additive manufacturing ; density-functional theory ; DFT ; duplex microstructure ; HEAs ; high-entropy alloys ; MATERIALS SCIENCE ; MPEAs ; Multi-principal-element alloys ; multimodal ; nanostructure ; phase equilibrium ; theory-guided</subject><ispartof>Acta materialia, 2024-06, Vol.272, p.119952, Article 119952</ispartof><rights>2024 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</citedby><cites>FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</cites><orcidid>0000-0002-6657-562X ; 0000-0002-6473-7568 ; 0000-0002-0842-6474 ; 0000-0003-1727-8220 ; 0000-0003-0066-6374 ; 0000-0002-5218-7597 ; 0000-0003-0794-7283 ; 0000-0003-1527-9713 ; 0000-0002-7521-2759 ; 0000-0002-3901-6478 ; 0000-0002-0246-6256 ; 0000-0001-7349-7597 ; 0000000315279713 ; 0000000239016478 ; 0000000275212759 ; 0000000202466256 ; 000000026657562X ; 0000000173497597 ; 0000000317278220 ; 0000000208426474 ; 0000000264737568 ; 0000000252187597 ; 0000000307947283 ; 0000000300666374</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645424003045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2345930$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Tiarks, Jordan</creatorcontrib><creatorcontrib>White, Emma M.H.</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Lim, Hannah</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Carroll, Jay D.</creatorcontrib><creatorcontrib>Ouyang, Gaoyuan</creatorcontrib><creatorcontrib>Abere, Michael J.</creatorcontrib><creatorcontrib>Naorem, Rameshwari</creatorcontrib><creatorcontrib>Huang, Hailong</creatorcontrib><creatorcontrib>Riedemann, Trevor M.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Anderson, Iver E.</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Theory-guided design of duplex-phase multi-principal-element alloys</title><title>Acta materialia</title><description>Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions. [Display omitted]</description><subject>additive manufacturing</subject><subject>density-functional theory</subject><subject>DFT</subject><subject>duplex microstructure</subject><subject>HEAs</subject><subject>high-entropy alloys</subject><subject>MATERIALS SCIENCE</subject><subject>MPEAs</subject><subject>Multi-principal-element alloys</subject><subject>multimodal</subject><subject>nanostructure</subject><subject>phase equilibrium</subject><subject>theory-guided</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EEqXwE5Ai7g5-xskJoYqXVIlLOVvGWbeu8pLtIPrvSZTeOe0eZmZ3PoTuKckpocXjMTc2mdaknBEmckqrSrILtKKl4pgJyS-nncsKF0KKa3QT45EQypQgK7TZHaAPJ7wffQ11VkP0-y7rXVaPQwO_eDiYCFk7NsnjIfjO-sE0GBpooUuZaZr-FG_RlTNNhLvzXKOv15fd5h1vP98-Ns9bbDkvEjaEWlIyphRV1FUWJJRUSABGVSmV5cx9CyiUM6IsJTHKWUZMbVghKiql4mv0sOT2MXkdrU9gD7bvOrBJMy5kxckkkovIhj7GAE5Pb7cmnDQlesalj_qMS8-49IJr8j0tPpga_HgI8wHoLNQ-zPl17_9J-AMr-nVj</recordid><startdate>20240615</startdate><enddate>20240615</enddate><creator>Singh, Prashant</creator><creator>Johnson, Duane D.</creator><creator>Tiarks, Jordan</creator><creator>White, Emma M.H.</creator><creator>Kustas, Andrew B.</creator><creator>Pegues, Jonathan W.</creator><creator>Jones, Morgan R.</creator><creator>Lim, Hannah</creator><creator>DelRio, Frank W.</creator><creator>Carroll, Jay D.</creator><creator>Ouyang, Gaoyuan</creator><creator>Abere, Michael J.</creator><creator>Naorem, Rameshwari</creator><creator>Huang, Hailong</creator><creator>Riedemann, Trevor M.</creator><creator>Kotula, Paul G.</creator><creator>Anderson, Iver E.</creator><creator>Argibay, Nicolas</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6657-562X</orcidid><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid><orcidid>https://orcid.org/0000-0002-0842-6474</orcidid><orcidid>https://orcid.org/0000-0003-1727-8220</orcidid><orcidid>https://orcid.org/0000-0003-0066-6374</orcidid><orcidid>https://orcid.org/0000-0002-5218-7597</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0003-1527-9713</orcidid><orcidid>https://orcid.org/0000-0002-7521-2759</orcidid><orcidid>https://orcid.org/0000-0002-3901-6478</orcidid><orcidid>https://orcid.org/0000-0002-0246-6256</orcidid><orcidid>https://orcid.org/0000-0001-7349-7597</orcidid><orcidid>https://orcid.org/0000000315279713</orcidid><orcidid>https://orcid.org/0000000239016478</orcidid><orcidid>https://orcid.org/0000000275212759</orcidid><orcidid>https://orcid.org/0000000202466256</orcidid><orcidid>https://orcid.org/000000026657562X</orcidid><orcidid>https://orcid.org/0000000173497597</orcidid><orcidid>https://orcid.org/0000000317278220</orcidid><orcidid>https://orcid.org/0000000208426474</orcidid><orcidid>https://orcid.org/0000000264737568</orcidid><orcidid>https://orcid.org/0000000252187597</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><orcidid>https://orcid.org/0000000300666374</orcidid></search><sort><creationdate>20240615</creationdate><title>Theory-guided design of duplex-phase multi-principal-element alloys</title><author>Singh, Prashant ; Johnson, Duane D. ; Tiarks, Jordan ; White, Emma M.H. ; Kustas, Andrew B. ; Pegues, Jonathan W. ; Jones, Morgan R. ; Lim, Hannah ; DelRio, Frank W. ; Carroll, Jay D. ; Ouyang, Gaoyuan ; Abere, Michael J. ; Naorem, Rameshwari ; Huang, Hailong ; Riedemann, Trevor M. ; Kotula, Paul G. ; Anderson, Iver E. ; Argibay, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-a01c082277171f9ce5e8145ee217857c32fb4e67fa48850a7fc20ada264915573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>additive manufacturing</topic><topic>density-functional theory</topic><topic>DFT</topic><topic>duplex microstructure</topic><topic>HEAs</topic><topic>high-entropy alloys</topic><topic>MATERIALS SCIENCE</topic><topic>MPEAs</topic><topic>Multi-principal-element alloys</topic><topic>multimodal</topic><topic>nanostructure</topic><topic>phase equilibrium</topic><topic>theory-guided</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Prashant</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Tiarks, Jordan</creatorcontrib><creatorcontrib>White, Emma M.H.</creatorcontrib><creatorcontrib>Kustas, Andrew B.</creatorcontrib><creatorcontrib>Pegues, Jonathan W.</creatorcontrib><creatorcontrib>Jones, Morgan R.</creatorcontrib><creatorcontrib>Lim, Hannah</creatorcontrib><creatorcontrib>DelRio, Frank W.</creatorcontrib><creatorcontrib>Carroll, Jay D.</creatorcontrib><creatorcontrib>Ouyang, Gaoyuan</creatorcontrib><creatorcontrib>Abere, Michael J.</creatorcontrib><creatorcontrib>Naorem, Rameshwari</creatorcontrib><creatorcontrib>Huang, Hailong</creatorcontrib><creatorcontrib>Riedemann, Trevor M.</creatorcontrib><creatorcontrib>Kotula, Paul G.</creatorcontrib><creatorcontrib>Anderson, Iver E.</creatorcontrib><creatorcontrib>Argibay, Nicolas</creatorcontrib><creatorcontrib>Ames Laboratory (AMES), Ames, IA (United States)</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Prashant</au><au>Johnson, Duane D.</au><au>Tiarks, Jordan</au><au>White, Emma M.H.</au><au>Kustas, Andrew B.</au><au>Pegues, Jonathan W.</au><au>Jones, Morgan R.</au><au>Lim, Hannah</au><au>DelRio, Frank W.</au><au>Carroll, Jay D.</au><au>Ouyang, Gaoyuan</au><au>Abere, Michael J.</au><au>Naorem, Rameshwari</au><au>Huang, Hailong</au><au>Riedemann, Trevor M.</au><au>Kotula, Paul G.</au><au>Anderson, Iver E.</au><au>Argibay, Nicolas</au><aucorp>Ames Laboratory (AMES), Ames, IA (United States)</aucorp><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory-guided design of duplex-phase multi-principal-element alloys</atitle><jtitle>Acta materialia</jtitle><date>2024-06-15</date><risdate>2024</risdate><volume>272</volume><spage>119952</spage><pages>119952-</pages><artnum>119952</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Density-functional theory (DFT) is used to identify phase-equilibria in multi-principal-element and high-entropy alloys (MPEAs/HEAs), including duplex-phase and eutectic microstructures. A combination of composition-dependent formation energy and electronic-structure-based ordering parameters were used to identify a transition from FCC to BCC favoring mixtures, and these predictions experimentally validated in the Al-Co-Cr-Cu-Fe-Ni system. A sharp crossover in lattice structure and dual-phase stability as a function of composition were predicted via DFT and validated experimentally. The impact of solidification kinetics and thermodynamic stability was explored experimentally using a range of techniques, from slow (castings) to rapid (laser remelting), which showed a decoupling of phase fraction from thermal history, i.e., phase fraction was found to be solidification rate-independent, enabling tuning of a multi-modal cell and grain size ranging from nanoscale through macroscale. Strength and ductility tradeoffs for select processing parameters were investigated via uniaxial tension and small-punch testing on specimens manufactured via powder-based additive manufacturing (directed-energy deposition). This work establishes a pathway for design and optimization of next-generation multiphase superalloys via tailoring of structural and chemical ordering in concentrated solid solutions. [Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2024.119952</doi><orcidid>https://orcid.org/0000-0002-6657-562X</orcidid><orcidid>https://orcid.org/0000-0002-6473-7568</orcidid><orcidid>https://orcid.org/0000-0002-0842-6474</orcidid><orcidid>https://orcid.org/0000-0003-1727-8220</orcidid><orcidid>https://orcid.org/0000-0003-0066-6374</orcidid><orcidid>https://orcid.org/0000-0002-5218-7597</orcidid><orcidid>https://orcid.org/0000-0003-0794-7283</orcidid><orcidid>https://orcid.org/0000-0003-1527-9713</orcidid><orcidid>https://orcid.org/0000-0002-7521-2759</orcidid><orcidid>https://orcid.org/0000-0002-3901-6478</orcidid><orcidid>https://orcid.org/0000-0002-0246-6256</orcidid><orcidid>https://orcid.org/0000-0001-7349-7597</orcidid><orcidid>https://orcid.org/0000000315279713</orcidid><orcidid>https://orcid.org/0000000239016478</orcidid><orcidid>https://orcid.org/0000000275212759</orcidid><orcidid>https://orcid.org/0000000202466256</orcidid><orcidid>https://orcid.org/000000026657562X</orcidid><orcidid>https://orcid.org/0000000173497597</orcidid><orcidid>https://orcid.org/0000000317278220</orcidid><orcidid>https://orcid.org/0000000208426474</orcidid><orcidid>https://orcid.org/0000000264737568</orcidid><orcidid>https://orcid.org/0000000252187597</orcidid><orcidid>https://orcid.org/0000000307947283</orcidid><orcidid>https://orcid.org/0000000300666374</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2024-06, Vol.272, p.119952, Article 119952
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_2345930
source Elsevier ScienceDirect Journals Complete
subjects additive manufacturing
density-functional theory
DFT
duplex microstructure
HEAs
high-entropy alloys
MATERIALS SCIENCE
MPEAs
Multi-principal-element alloys
multimodal
nanostructure
phase equilibrium
theory-guided
title Theory-guided design of duplex-phase multi-principal-element alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A17%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory-guided%20design%20of%20duplex-phase%20multi-principal-element%20alloys&rft.jtitle=Acta%20materialia&rft.au=Singh,%20Prashant&rft.aucorp=Ames%20Laboratory%20(AMES),%20Ames,%20IA%20(United%20States)&rft.date=2024-06-15&rft.volume=272&rft.spage=119952&rft.pages=119952-&rft.artnum=119952&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2024.119952&rft_dat=%3Celsevier_osti_%3ES1359645424003045%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645424003045&rfr_iscdi=true