Range‐separated density functional theory using multiresolution analysis and quantum computing

Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functiona...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry 2024-09, Vol.45 (23), p.1987-2000
Hauptverfasser: Poirier, Nicolas, Kottmann, Jakob S., Aspuru‐Guzik, Alán, Mongeau, Luc, Najafi‐Yazdi, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2000
container_issue 23
container_start_page 1987
container_title Journal of computational chemistry
container_volume 45
creator Poirier, Nicolas
Kottmann, Jakob S.
Aspuru‐Guzik, Alán
Mongeau, Luc
Najafi‐Yazdi, Alireza
description Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functional theory (RS‐DFT). The use of RS‐DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis‐set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy. The performance of existing quantum computers is limited by noise, especially for calculations which involve large molecular systems. One possible solution is to transfer some of the computational load to a classical computer. Such transfer can be achieved by assigning one portion of the electronic repulsion to a quantum computer and the remainder to a classical computer. The use of pair natural orbitals enables a further reduction of the computational load placed on a quantum computer.
doi_str_mv 10.1002/jcc.27384
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2345847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3077562681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3754-dbe1fd87f2ef4addfe15bf40a73fd6c0282fb49d4d3b6e23f24861e971bf1ba73</originalsourceid><addsrcrecordid>eNp10c1qFTEUB_AgFnutLnwBGXSji2nzNZOZpVz8pCCIgruYSU5uc5lJbicJMjsfoc_okzTXaV0Irk7g_PhDzh-hZwSfE4zpxV7rcypYxx-gDcF9W_ed-P4QbTDpad21DTlFj2PcY4xZ0_JH6JR1AveEsw368UX5Hfz-dRPhoGaVwFQGfHRpqWz2Orng1VilKwjzUuXo_K6a8pjcDDGM-biuVBFLdLE8THWdlU95qnSYDmXtd0_QiVVjhKd38wx9e_f26_ZDffn5_cftm8taM9Hw2gxArOmEpWC5MsYCaQbLsRLMmlZj2lE78N5ww4YWKLOUdy2BXpDBkqGoM_RizQ0xORm1S6CvdPAedJKU8abjR_RqRYc5XGeISU4uahhH5SHkKBluCC-XFLzQl__Qfchz-epRCdG0tO1IUa9XpecQ4wxWHmY3qXmRBMtjN7J0I_90U-zzu8Q8TGD-yvsyCrhYwU83wvL_JPlpu10jbwEiMZtS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3077562681</pqid></control><display><type>article</type><title>Range‐separated density functional theory using multiresolution analysis and quantum computing</title><source>Wiley Online Library All Journals</source><creator>Poirier, Nicolas ; Kottmann, Jakob S. ; Aspuru‐Guzik, Alán ; Mongeau, Luc ; Najafi‐Yazdi, Alireza</creator><creatorcontrib>Poirier, Nicolas ; Kottmann, Jakob S. ; Aspuru‐Guzik, Alán ; Mongeau, Luc ; Najafi‐Yazdi, Alireza</creatorcontrib><description>Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functional theory (RS‐DFT). The use of RS‐DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis‐set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy. The performance of existing quantum computers is limited by noise, especially for calculations which involve large molecular systems. One possible solution is to transfer some of the computational load to a classical computer. Such transfer can be achieved by assigning one portion of the electronic repulsion to a quantum computer and the remainder to a classical computer. The use of pair natural orbitals enables a further reduction of the computational load placed on a quantum computer.</description><identifier>ISSN: 0192-8651</identifier><identifier>ISSN: 1096-987X</identifier><identifier>EISSN: 1096-987X</identifier><identifier>DOI: 10.1002/jcc.27384</identifier><identifier>PMID: 38709143</identifier><language>eng</language><publisher>Hoboken, USA: 1John Wiley &amp; Sons, Inc</publisher><subject>Ab initio calculations ; Cost analysis ; density functional calculation ; Density functional theory ; Hamiltonian functions ; Molecular orbitals ; Multiresolution analysis ; Quantum chemistry ; Quantum computers ; Quantum computing ; Qubits (quantum computing) ; variational quantum eigensolver ; Wave functions</subject><ispartof>Journal of computational chemistry, 2024-09, Vol.45 (23), p.1987-2000</ispartof><rights>2024 The Authors. published by Wiley Periodicals LLC.</rights><rights>2024 The Authors. Journal of Computational Chemistry published by Wiley Periodicals LLC.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3754-dbe1fd87f2ef4addfe15bf40a73fd6c0282fb49d4d3b6e23f24861e971bf1ba73</cites><orcidid>0000-0002-8277-4434 ; 0000-0002-4156-2048 ; 0009-0002-4589-0804 ; 0000-0003-0344-227X ; 0000000241562048 ; 0000000282774434 ; 0009000245890804 ; 000000030344227X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjcc.27384$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjcc.27384$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38709143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/2345847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Poirier, Nicolas</creatorcontrib><creatorcontrib>Kottmann, Jakob S.</creatorcontrib><creatorcontrib>Aspuru‐Guzik, Alán</creatorcontrib><creatorcontrib>Mongeau, Luc</creatorcontrib><creatorcontrib>Najafi‐Yazdi, Alireza</creatorcontrib><title>Range‐separated density functional theory using multiresolution analysis and quantum computing</title><title>Journal of computational chemistry</title><addtitle>J Comput Chem</addtitle><description>Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functional theory (RS‐DFT). The use of RS‐DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis‐set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy. The performance of existing quantum computers is limited by noise, especially for calculations which involve large molecular systems. One possible solution is to transfer some of the computational load to a classical computer. Such transfer can be achieved by assigning one portion of the electronic repulsion to a quantum computer and the remainder to a classical computer. The use of pair natural orbitals enables a further reduction of the computational load placed on a quantum computer.</description><subject>Ab initio calculations</subject><subject>Cost analysis</subject><subject>density functional calculation</subject><subject>Density functional theory</subject><subject>Hamiltonian functions</subject><subject>Molecular orbitals</subject><subject>Multiresolution analysis</subject><subject>Quantum chemistry</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Qubits (quantum computing)</subject><subject>variational quantum eigensolver</subject><subject>Wave functions</subject><issn>0192-8651</issn><issn>1096-987X</issn><issn>1096-987X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp10c1qFTEUB_AgFnutLnwBGXSji2nzNZOZpVz8pCCIgruYSU5uc5lJbicJMjsfoc_okzTXaV0Irk7g_PhDzh-hZwSfE4zpxV7rcypYxx-gDcF9W_ed-P4QbTDpad21DTlFj2PcY4xZ0_JH6JR1AveEsw368UX5Hfz-dRPhoGaVwFQGfHRpqWz2Orng1VilKwjzUuXo_K6a8pjcDDGM-biuVBFLdLE8THWdlU95qnSYDmXtd0_QiVVjhKd38wx9e_f26_ZDffn5_cftm8taM9Hw2gxArOmEpWC5MsYCaQbLsRLMmlZj2lE78N5ww4YWKLOUdy2BXpDBkqGoM_RizQ0xORm1S6CvdPAedJKU8abjR_RqRYc5XGeISU4uahhH5SHkKBluCC-XFLzQl__Qfchz-epRCdG0tO1IUa9XpecQ4wxWHmY3qXmRBMtjN7J0I_90U-zzu8Q8TGD-yvsyCrhYwU83wvL_JPlpu10jbwEiMZtS</recordid><startdate>20240905</startdate><enddate>20240905</enddate><creator>Poirier, Nicolas</creator><creator>Kottmann, Jakob S.</creator><creator>Aspuru‐Guzik, Alán</creator><creator>Mongeau, Luc</creator><creator>Najafi‐Yazdi, Alireza</creator><general>1John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0002-4156-2048</orcidid><orcidid>https://orcid.org/0009-0002-4589-0804</orcidid><orcidid>https://orcid.org/0000-0003-0344-227X</orcidid><orcidid>https://orcid.org/0000000241562048</orcidid><orcidid>https://orcid.org/0000000282774434</orcidid><orcidid>https://orcid.org/0009000245890804</orcidid><orcidid>https://orcid.org/000000030344227X</orcidid></search><sort><creationdate>20240905</creationdate><title>Range‐separated density functional theory using multiresolution analysis and quantum computing</title><author>Poirier, Nicolas ; Kottmann, Jakob S. ; Aspuru‐Guzik, Alán ; Mongeau, Luc ; Najafi‐Yazdi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3754-dbe1fd87f2ef4addfe15bf40a73fd6c0282fb49d4d3b6e23f24861e971bf1ba73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Ab initio calculations</topic><topic>Cost analysis</topic><topic>density functional calculation</topic><topic>Density functional theory</topic><topic>Hamiltonian functions</topic><topic>Molecular orbitals</topic><topic>Multiresolution analysis</topic><topic>Quantum chemistry</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Qubits (quantum computing)</topic><topic>variational quantum eigensolver</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poirier, Nicolas</creatorcontrib><creatorcontrib>Kottmann, Jakob S.</creatorcontrib><creatorcontrib>Aspuru‐Guzik, Alán</creatorcontrib><creatorcontrib>Mongeau, Luc</creatorcontrib><creatorcontrib>Najafi‐Yazdi, Alireza</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poirier, Nicolas</au><au>Kottmann, Jakob S.</au><au>Aspuru‐Guzik, Alán</au><au>Mongeau, Luc</au><au>Najafi‐Yazdi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Range‐separated density functional theory using multiresolution analysis and quantum computing</atitle><jtitle>Journal of computational chemistry</jtitle><addtitle>J Comput Chem</addtitle><date>2024-09-05</date><risdate>2024</risdate><volume>45</volume><issue>23</issue><spage>1987</spage><epage>2000</epage><pages>1987-2000</pages><issn>0192-8651</issn><issn>1096-987X</issn><eissn>1096-987X</eissn><abstract>Quantum computers are expected to outperform classical computers for specific problems in quantum chemistry. Such calculations remain expensive, but costs can be lowered through the partition of the molecular system. In the present study, partition was achieved with range‐separated density functional theory (RS‐DFT). The use of RS‐DFT reduces both the basis set size and the active space size dependence of the ground state energy in comparison with the use of wave function theory (WFT) alone. The utilization of pair natural orbitals (PNOs) in place of canonical molecular orbitals (MOs) results in more compact qubit Hamiltonians. To test this strategy, a basis‐set independent framework, known as multiresolution analysis (MRA), was employed to generate PNOs. Tests were conducted with the variational quantum eigensolver for a number of molecules. The results show that the proposed approach reduces the number of qubits needed to reach a target energy accuracy. The performance of existing quantum computers is limited by noise, especially for calculations which involve large molecular systems. One possible solution is to transfer some of the computational load to a classical computer. Such transfer can be achieved by assigning one portion of the electronic repulsion to a quantum computer and the remainder to a classical computer. The use of pair natural orbitals enables a further reduction of the computational load placed on a quantum computer.</abstract><cop>Hoboken, USA</cop><pub>1John Wiley &amp; Sons, Inc</pub><pmid>38709143</pmid><doi>10.1002/jcc.27384</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-8277-4434</orcidid><orcidid>https://orcid.org/0000-0002-4156-2048</orcidid><orcidid>https://orcid.org/0009-0002-4589-0804</orcidid><orcidid>https://orcid.org/0000-0003-0344-227X</orcidid><orcidid>https://orcid.org/0000000241562048</orcidid><orcidid>https://orcid.org/0000000282774434</orcidid><orcidid>https://orcid.org/0009000245890804</orcidid><orcidid>https://orcid.org/000000030344227X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0192-8651
ispartof Journal of computational chemistry, 2024-09, Vol.45 (23), p.1987-2000
issn 0192-8651
1096-987X
1096-987X
language eng
recordid cdi_osti_scitechconnect_2345847
source Wiley Online Library All Journals
subjects Ab initio calculations
Cost analysis
density functional calculation
Density functional theory
Hamiltonian functions
Molecular orbitals
Multiresolution analysis
Quantum chemistry
Quantum computers
Quantum computing
Qubits (quantum computing)
variational quantum eigensolver
Wave functions
title Range‐separated density functional theory using multiresolution analysis and quantum computing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A35%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Range%E2%80%90separated%20density%20functional%20theory%20using%20multiresolution%20analysis%20and%20quantum%20computing&rft.jtitle=Journal%20of%20computational%20chemistry&rft.au=Poirier,%20Nicolas&rft.date=2024-09-05&rft.volume=45&rft.issue=23&rft.spage=1987&rft.epage=2000&rft.pages=1987-2000&rft.issn=0192-8651&rft.eissn=1096-987X&rft_id=info:doi/10.1002/jcc.27384&rft_dat=%3Cproquest_osti_%3E3077562681%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3077562681&rft_id=info:pmid/38709143&rfr_iscdi=true