High-temperature lean Cu alloys with Cr-to-Nb atomic ratio of 2

Two Cu-Cr-Nb alloys, denoted as alloy 1 (comprising Cu-0.89 at% Cr-0.42 at% Nb) and alloy 2 (comprising Cu-1.84 at% Cr-0.99 at% Nb), were produced through a series of manufacturing processes including vacuum induction melting, melt spinning, consolidation, brazing, and baking, with both alloys aimed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials today communications 2024-04, Vol.39
Hauptverfasser: Wang, Tianhao, Lu, Zexi, Zhang, Qiaofu, Saboo, Abhinav, Ma, Xiaolong, Liu, Tingkun, Mahbooba, Zaynab, Hardin, Jacqueline, Li, Xiao, Kappagantula, Keerti, Kozmel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Materials today communications
container_volume 39
creator Wang, Tianhao
Lu, Zexi
Zhang, Qiaofu
Saboo, Abhinav
Ma, Xiaolong
Liu, Tingkun
Mahbooba, Zaynab
Hardin, Jacqueline
Li, Xiao
Kappagantula, Keerti
Kozmel, Thomas
description Two Cu-Cr-Nb alloys, denoted as alloy 1 (comprising Cu-0.89 at% Cr-0.42 at% Nb) and alloy 2 (comprising Cu-1.84 at% Cr-0.99 at% Nb), were produced through a series of manufacturing processes including vacuum induction melting, melt spinning, consolidation, brazing, and baking, with both alloys aimed at achieving a nominal Cr-to-Nb atomic ratio of 2. Microstructural characterization using transmission electron microscopy and X-ray diffraction identified the cubic C15 Laves-phase Cr2Nb as the dominant precipitate in both alloys, cross-validated by thermodynamic calculations and atomistic simulation-based density functional theory (DFT). Besides cubic C15 Cr2Nb, hexagonal C14-phase Cr2Nb and α-BiF3 cubic structured Cr3Nb were also observed in the alloys, including a coherent interface formed between the Cr3Nb precipitate and the Cu matrix. The hardness of the alloys increases, and the electrical conductivity decreases with increasing alloying addition content; two practical equations described the trends. Further DFT simulations revealed that the electrical conductivity (conductance) of the Cu/Cr2Nb interface is an order of magnitude higher than the intrinsic Cu high-angle grain boundaries.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2345211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2345211</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23452113</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgChbtOxzugTRNoZ0citLJyb3EcG0jaU-aK-Lb6-Dg6PT_w7cSic4LLU2ly_XPb0Ua410plZWFMpVJxLHx_SAZxwfOlpcZIaCdoF7AhkCvCE_PA9SzZJKXG1im0Tv4UE9AHei92HQ2REy_3YnD-XStG0mRfRudZ3SDo2lCx63OTaGzLP8LvQF92jlM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High-temperature lean Cu alloys with Cr-to-Nb atomic ratio of 2</title><source>Alma/SFX Local Collection</source><creator>Wang, Tianhao ; Lu, Zexi ; Zhang, Qiaofu ; Saboo, Abhinav ; Ma, Xiaolong ; Liu, Tingkun ; Mahbooba, Zaynab ; Hardin, Jacqueline ; Li, Xiao ; Kappagantula, Keerti ; Kozmel, Thomas</creator><creatorcontrib>Wang, Tianhao ; Lu, Zexi ; Zhang, Qiaofu ; Saboo, Abhinav ; Ma, Xiaolong ; Liu, Tingkun ; Mahbooba, Zaynab ; Hardin, Jacqueline ; Li, Xiao ; Kappagantula, Keerti ; Kozmel, Thomas ; QuesTek Innovations LLC, Evanston, IL (United States) ; Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><description>Two Cu-Cr-Nb alloys, denoted as alloy 1 (comprising Cu-0.89 at% Cr-0.42 at% Nb) and alloy 2 (comprising Cu-1.84 at% Cr-0.99 at% Nb), were produced through a series of manufacturing processes including vacuum induction melting, melt spinning, consolidation, brazing, and baking, with both alloys aimed at achieving a nominal Cr-to-Nb atomic ratio of 2. Microstructural characterization using transmission electron microscopy and X-ray diffraction identified the cubic C15 Laves-phase Cr2Nb as the dominant precipitate in both alloys, cross-validated by thermodynamic calculations and atomistic simulation-based density functional theory (DFT). Besides cubic C15 Cr2Nb, hexagonal C14-phase Cr2Nb and α-BiF3 cubic structured Cr3Nb were also observed in the alloys, including a coherent interface formed between the Cr3Nb precipitate and the Cu matrix. The hardness of the alloys increases, and the electrical conductivity decreases with increasing alloying addition content; two practical equations described the trends. Further DFT simulations revealed that the electrical conductivity (conductance) of the Cu/Cr2Nb interface is an order of magnitude higher than the intrinsic Cu high-angle grain boundaries.</description><identifier>ISSN: 2352-4928</identifier><identifier>EISSN: 2352-4928</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>Cr2Nb ; Cu-Cr-Nb alloy ; Density-functional theory ; Electrical conductivity ; MATERIALS SCIENCE ; Thermodynamic calculation ; Transmission electron microscope</subject><ispartof>Materials today communications, 2024-04, Vol.39</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2345211$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Tianhao</creatorcontrib><creatorcontrib>Lu, Zexi</creatorcontrib><creatorcontrib>Zhang, Qiaofu</creatorcontrib><creatorcontrib>Saboo, Abhinav</creatorcontrib><creatorcontrib>Ma, Xiaolong</creatorcontrib><creatorcontrib>Liu, Tingkun</creatorcontrib><creatorcontrib>Mahbooba, Zaynab</creatorcontrib><creatorcontrib>Hardin, Jacqueline</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Kappagantula, Keerti</creatorcontrib><creatorcontrib>Kozmel, Thomas</creatorcontrib><creatorcontrib>QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><title>High-temperature lean Cu alloys with Cr-to-Nb atomic ratio of 2</title><title>Materials today communications</title><description>Two Cu-Cr-Nb alloys, denoted as alloy 1 (comprising Cu-0.89 at% Cr-0.42 at% Nb) and alloy 2 (comprising Cu-1.84 at% Cr-0.99 at% Nb), were produced through a series of manufacturing processes including vacuum induction melting, melt spinning, consolidation, brazing, and baking, with both alloys aimed at achieving a nominal Cr-to-Nb atomic ratio of 2. Microstructural characterization using transmission electron microscopy and X-ray diffraction identified the cubic C15 Laves-phase Cr2Nb as the dominant precipitate in both alloys, cross-validated by thermodynamic calculations and atomistic simulation-based density functional theory (DFT). Besides cubic C15 Cr2Nb, hexagonal C14-phase Cr2Nb and α-BiF3 cubic structured Cr3Nb were also observed in the alloys, including a coherent interface formed between the Cr3Nb precipitate and the Cu matrix. The hardness of the alloys increases, and the electrical conductivity decreases with increasing alloying addition content; two practical equations described the trends. Further DFT simulations revealed that the electrical conductivity (conductance) of the Cu/Cr2Nb interface is an order of magnitude higher than the intrinsic Cu high-angle grain boundaries.</description><subject>Cr2Nb</subject><subject>Cu-Cr-Nb alloy</subject><subject>Density-functional theory</subject><subject>Electrical conductivity</subject><subject>MATERIALS SCIENCE</subject><subject>Thermodynamic calculation</subject><subject>Transmission electron microscope</subject><issn>2352-4928</issn><issn>2352-4928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQgOEgChbtOxzugTRNoZ0citLJyb3EcG0jaU-aK-Lb6-Dg6PT_w7cSic4LLU2ly_XPb0Ua410plZWFMpVJxLHx_SAZxwfOlpcZIaCdoF7AhkCvCE_PA9SzZJKXG1im0Tv4UE9AHei92HQ2REy_3YnD-XStG0mRfRudZ3SDo2lCx63OTaGzLP8LvQF92jlM</recordid><startdate>20240410</startdate><enddate>20240410</enddate><creator>Wang, Tianhao</creator><creator>Lu, Zexi</creator><creator>Zhang, Qiaofu</creator><creator>Saboo, Abhinav</creator><creator>Ma, Xiaolong</creator><creator>Liu, Tingkun</creator><creator>Mahbooba, Zaynab</creator><creator>Hardin, Jacqueline</creator><creator>Li, Xiao</creator><creator>Kappagantula, Keerti</creator><creator>Kozmel, Thomas</creator><general>Elsevier</general><scope>OTOTI</scope></search><sort><creationdate>20240410</creationdate><title>High-temperature lean Cu alloys with Cr-to-Nb atomic ratio of 2</title><author>Wang, Tianhao ; Lu, Zexi ; Zhang, Qiaofu ; Saboo, Abhinav ; Ma, Xiaolong ; Liu, Tingkun ; Mahbooba, Zaynab ; Hardin, Jacqueline ; Li, Xiao ; Kappagantula, Keerti ; Kozmel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23452113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Cr2Nb</topic><topic>Cu-Cr-Nb alloy</topic><topic>Density-functional theory</topic><topic>Electrical conductivity</topic><topic>MATERIALS SCIENCE</topic><topic>Thermodynamic calculation</topic><topic>Transmission electron microscope</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianhao</creatorcontrib><creatorcontrib>Lu, Zexi</creatorcontrib><creatorcontrib>Zhang, Qiaofu</creatorcontrib><creatorcontrib>Saboo, Abhinav</creatorcontrib><creatorcontrib>Ma, Xiaolong</creatorcontrib><creatorcontrib>Liu, Tingkun</creatorcontrib><creatorcontrib>Mahbooba, Zaynab</creatorcontrib><creatorcontrib>Hardin, Jacqueline</creatorcontrib><creatorcontrib>Li, Xiao</creatorcontrib><creatorcontrib>Kappagantula, Keerti</creatorcontrib><creatorcontrib>Kozmel, Thomas</creatorcontrib><creatorcontrib>QuesTek Innovations LLC, Evanston, IL (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Materials today communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianhao</au><au>Lu, Zexi</au><au>Zhang, Qiaofu</au><au>Saboo, Abhinav</au><au>Ma, Xiaolong</au><au>Liu, Tingkun</au><au>Mahbooba, Zaynab</au><au>Hardin, Jacqueline</au><au>Li, Xiao</au><au>Kappagantula, Keerti</au><au>Kozmel, Thomas</au><aucorp>QuesTek Innovations LLC, Evanston, IL (United States)</aucorp><aucorp>Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-temperature lean Cu alloys with Cr-to-Nb atomic ratio of 2</atitle><jtitle>Materials today communications</jtitle><date>2024-04-10</date><risdate>2024</risdate><volume>39</volume><issn>2352-4928</issn><eissn>2352-4928</eissn><abstract>Two Cu-Cr-Nb alloys, denoted as alloy 1 (comprising Cu-0.89 at% Cr-0.42 at% Nb) and alloy 2 (comprising Cu-1.84 at% Cr-0.99 at% Nb), were produced through a series of manufacturing processes including vacuum induction melting, melt spinning, consolidation, brazing, and baking, with both alloys aimed at achieving a nominal Cr-to-Nb atomic ratio of 2. Microstructural characterization using transmission electron microscopy and X-ray diffraction identified the cubic C15 Laves-phase Cr2Nb as the dominant precipitate in both alloys, cross-validated by thermodynamic calculations and atomistic simulation-based density functional theory (DFT). Besides cubic C15 Cr2Nb, hexagonal C14-phase Cr2Nb and α-BiF3 cubic structured Cr3Nb were also observed in the alloys, including a coherent interface formed between the Cr3Nb precipitate and the Cu matrix. The hardness of the alloys increases, and the electrical conductivity decreases with increasing alloying addition content; two practical equations described the trends. Further DFT simulations revealed that the electrical conductivity (conductance) of the Cu/Cr2Nb interface is an order of magnitude higher than the intrinsic Cu high-angle grain boundaries.</abstract><cop>United States</cop><pub>Elsevier</pub></addata></record>
fulltext fulltext
identifier ISSN: 2352-4928
ispartof Materials today communications, 2024-04, Vol.39
issn 2352-4928
2352-4928
language eng
recordid cdi_osti_scitechconnect_2345211
source Alma/SFX Local Collection
subjects Cr2Nb
Cu-Cr-Nb alloy
Density-functional theory
Electrical conductivity
MATERIALS SCIENCE
Thermodynamic calculation
Transmission electron microscope
title High-temperature lean Cu alloys with Cr-to-Nb atomic ratio of 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T06%3A19%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-temperature%20lean%20Cu%20alloys%20with%20Cr-to-Nb%20atomic%20ratio%20of%202&rft.jtitle=Materials%20today%20communications&rft.au=Wang,%20Tianhao&rft.aucorp=QuesTek%20Innovations%20LLC,%20Evanston,%20IL%20(United%20States)&rft.date=2024-04-10&rft.volume=39&rft.issn=2352-4928&rft.eissn=2352-4928&rft_id=info:doi/&rft_dat=%3Costi%3E2345211%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true