Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing
The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1435-1448 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1448 |
---|---|
container_issue | 17 |
container_start_page | 1435 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 12 |
creator | Douglin, John C Singh, Ramesh K Yang-Neyerlin, Ami C He, Cheng Yassin, Karam Miller, Hamish A Pagliaro, Maria V Capozzoli, Laura Carbo-Argibay, Enrique Brandon, Simon Ferreira, Paulo J Pivovar, Bryan S Dekel, Dario R |
description | The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H
2
-air (albeit CO
2
-free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm
−2
and current densities up to 3.5 A cm
−2
. Over a 200 h period of continuous operation in H
2
-air at a current density of 600 mA cm
−2
, our model Pd/C-CeO
2
anode cell exhibits record stability (∼30 μV h
−1
degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO
2
anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h
−1
. Thorough
in situ
evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs.
Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both
in situ
and
ex situ
analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs. |
doi_str_mv | 10.1039/d3ta07065d |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2344980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049109477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</originalsourceid><addsrcrecordid>eNpF0UtLAzEQAOBFFCzai3ch6E1YnWyym82xtPUBBT3Uc8jm0W7ZR02yYP-9WSs1h7z4mJlMkuQGwyMGwp80CRIYFLk-SyYZ5JAyyovz074sL5Op9zuIowQoOJ8kftkMqtYy1N0Gha1B2mycHM99h1qjtrKrfetRb9FHSK0zBsmu1-McRWq-R7ExkbaVk51BdjANUqZpPJI2GIf04GRVN3U4oGD8mOc6ubCy8Wb6t14ln8_L9fw1Xb2_vM1nq1QRSkOa5YUllQTKQFpLZc60oqBxiUGWWbwuCc6AKVVlmVaswpgXRkvNQUVKNblK7o5x-5hWeFWH-B7Vd51RQWQxBy8hovsj2rv-a4gFil0_uC7WJQhQjoFTxqJ6OCrleu-dsWLv6la6g8AgxuaLBVnPfpu_iPj2iJ1XJ_f_OeQHzU-BYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049109477</pqid></control><display><type>article</type><title>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Douglin, John C ; Singh, Ramesh K ; Yang-Neyerlin, Ami C ; He, Cheng ; Yassin, Karam ; Miller, Hamish A ; Pagliaro, Maria V ; Capozzoli, Laura ; Carbo-Argibay, Enrique ; Brandon, Simon ; Ferreira, Paulo J ; Pivovar, Bryan S ; Dekel, Dario R</creator><creatorcontrib>Douglin, John C ; Singh, Ramesh K ; Yang-Neyerlin, Ami C ; He, Cheng ; Yassin, Karam ; Miller, Hamish A ; Pagliaro, Maria V ; Capozzoli, Laura ; Carbo-Argibay, Enrique ; Brandon, Simon ; Ferreira, Paulo J ; Pivovar, Bryan S ; Dekel, Dario R ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H
2
-air (albeit CO
2
-free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm
−2
and current densities up to 3.5 A cm
−2
. Over a 200 h period of continuous operation in H
2
-air at a current density of 600 mA cm
−2
, our model Pd/C-CeO
2
anode cell exhibits record stability (∼30 μV h
−1
degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO
2
anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h
−1
. Thorough
in situ
evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs.
Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both
in situ
and
ex situ
analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07065d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>08 HYDROGEN ; 30 DIRECT ENERGY CONVERSION ; Anion exchanging ; anion-exchange membrane fuel cells ; Anions ; Anodes ; Carbon dioxide ; Catalysts ; cell durability ; Cerium oxides ; Current density ; Degradation ; Durability ; Electrocatalysts ; Fuel cells ; Fuel technology ; Ionomers ; Membranes ; Mitigation ; mitigation strategies ; Palladium ; Platinum ; Stability ; Stability analysis ; Toughness</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1435-1448</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</citedby><cites>FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</cites><orcidid>0000-0003-4151-1424 ; 0000-0003-1668-6476 ; 0000-0001-5718-8938 ; 0000-0001-7472-9564 ; 0000-0002-8610-0808 ; 0000000151815363 ; 0000000286100808 ; 0000000341511424 ; 0000000316686476 ; 0000000157188938 ; 0000000174729564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2344980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglin, John C</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yang-Neyerlin, Ami C</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Yassin, Karam</creatorcontrib><creatorcontrib>Miller, Hamish A</creatorcontrib><creatorcontrib>Pagliaro, Maria V</creatorcontrib><creatorcontrib>Capozzoli, Laura</creatorcontrib><creatorcontrib>Carbo-Argibay, Enrique</creatorcontrib><creatorcontrib>Brandon, Simon</creatorcontrib><creatorcontrib>Ferreira, Paulo J</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Dekel, Dario R</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H
2
-air (albeit CO
2
-free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm
−2
and current densities up to 3.5 A cm
−2
. Over a 200 h period of continuous operation in H
2
-air at a current density of 600 mA cm
−2
, our model Pd/C-CeO
2
anode cell exhibits record stability (∼30 μV h
−1
degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO
2
anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h
−1
. Thorough
in situ
evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs.
Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both
in situ
and
ex situ
analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.</description><subject>08 HYDROGEN</subject><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Anion exchanging</subject><subject>anion-exchange membrane fuel cells</subject><subject>Anions</subject><subject>Anodes</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>cell durability</subject><subject>Cerium oxides</subject><subject>Current density</subject><subject>Degradation</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Ionomers</subject><subject>Membranes</subject><subject>Mitigation</subject><subject>mitigation strategies</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Toughness</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0UtLAzEQAOBFFCzai3ch6E1YnWyym82xtPUBBT3Uc8jm0W7ZR02yYP-9WSs1h7z4mJlMkuQGwyMGwp80CRIYFLk-SyYZ5JAyyovz074sL5Op9zuIowQoOJ8kftkMqtYy1N0Gha1B2mycHM99h1qjtrKrfetRb9FHSK0zBsmu1-McRWq-R7ExkbaVk51BdjANUqZpPJI2GIf04GRVN3U4oGD8mOc6ubCy8Wb6t14ln8_L9fw1Xb2_vM1nq1QRSkOa5YUllQTKQFpLZc60oqBxiUGWWbwuCc6AKVVlmVaswpgXRkvNQUVKNblK7o5x-5hWeFWH-B7Vd51RQWQxBy8hovsj2rv-a4gFil0_uC7WJQhQjoFTxqJ6OCrleu-dsWLv6la6g8AgxuaLBVnPfpu_iPj2iJ1XJ_f_OeQHzU-BYg</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Douglin, John C</creator><creator>Singh, Ramesh K</creator><creator>Yang-Neyerlin, Ami C</creator><creator>He, Cheng</creator><creator>Yassin, Karam</creator><creator>Miller, Hamish A</creator><creator>Pagliaro, Maria V</creator><creator>Capozzoli, Laura</creator><creator>Carbo-Argibay, Enrique</creator><creator>Brandon, Simon</creator><creator>Ferreira, Paulo J</creator><creator>Pivovar, Bryan S</creator><creator>Dekel, Dario R</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4151-1424</orcidid><orcidid>https://orcid.org/0000-0003-1668-6476</orcidid><orcidid>https://orcid.org/0000-0001-5718-8938</orcidid><orcidid>https://orcid.org/0000-0001-7472-9564</orcidid><orcidid>https://orcid.org/0000-0002-8610-0808</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000286100808</orcidid><orcidid>https://orcid.org/0000000341511424</orcidid><orcidid>https://orcid.org/0000000316686476</orcidid><orcidid>https://orcid.org/0000000157188938</orcidid><orcidid>https://orcid.org/0000000174729564</orcidid></search><sort><creationdate>20240430</creationdate><title>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</title><author>Douglin, John C ; Singh, Ramesh K ; Yang-Neyerlin, Ami C ; He, Cheng ; Yassin, Karam ; Miller, Hamish A ; Pagliaro, Maria V ; Capozzoli, Laura ; Carbo-Argibay, Enrique ; Brandon, Simon ; Ferreira, Paulo J ; Pivovar, Bryan S ; Dekel, Dario R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>08 HYDROGEN</topic><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Anion exchanging</topic><topic>anion-exchange membrane fuel cells</topic><topic>Anions</topic><topic>Anodes</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>cell durability</topic><topic>Cerium oxides</topic><topic>Current density</topic><topic>Degradation</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Ionomers</topic><topic>Membranes</topic><topic>Mitigation</topic><topic>mitigation strategies</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglin, John C</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yang-Neyerlin, Ami C</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Yassin, Karam</creatorcontrib><creatorcontrib>Miller, Hamish A</creatorcontrib><creatorcontrib>Pagliaro, Maria V</creatorcontrib><creatorcontrib>Capozzoli, Laura</creatorcontrib><creatorcontrib>Carbo-Argibay, Enrique</creatorcontrib><creatorcontrib>Brandon, Simon</creatorcontrib><creatorcontrib>Ferreira, Paulo J</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Dekel, Dario R</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglin, John C</au><au>Singh, Ramesh K</au><au>Yang-Neyerlin, Ami C</au><au>He, Cheng</au><au>Yassin, Karam</au><au>Miller, Hamish A</au><au>Pagliaro, Maria V</au><au>Capozzoli, Laura</au><au>Carbo-Argibay, Enrique</au><au>Brandon, Simon</au><au>Ferreira, Paulo J</au><au>Pivovar, Bryan S</au><au>Dekel, Dario R</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-30</date><risdate>2024</risdate><volume>12</volume><issue>17</issue><spage>1435</spage><epage>1448</epage><pages>1435-1448</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H
2
-air (albeit CO
2
-free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm
−2
and current densities up to 3.5 A cm
−2
. Over a 200 h period of continuous operation in H
2
-air at a current density of 600 mA cm
−2
, our model Pd/C-CeO
2
anode cell exhibits record stability (∼30 μV h
−1
degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO
2
anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h
−1
. Thorough
in situ
evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs.
Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both
in situ
and
ex situ
analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta07065d</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4151-1424</orcidid><orcidid>https://orcid.org/0000-0003-1668-6476</orcidid><orcidid>https://orcid.org/0000-0001-5718-8938</orcidid><orcidid>https://orcid.org/0000-0001-7472-9564</orcidid><orcidid>https://orcid.org/0000-0002-8610-0808</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000286100808</orcidid><orcidid>https://orcid.org/0000000341511424</orcidid><orcidid>https://orcid.org/0000000316686476</orcidid><orcidid>https://orcid.org/0000000157188938</orcidid><orcidid>https://orcid.org/0000000174729564</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1435-1448 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_osti_scitechconnect_2344980 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | 08 HYDROGEN 30 DIRECT ENERGY CONVERSION Anion exchanging anion-exchange membrane fuel cells Anions Anodes Carbon dioxide Catalysts cell durability Cerium oxides Current density Degradation Durability Electrocatalysts Fuel cells Fuel technology Ionomers Membranes Mitigation mitigation strategies Palladium Platinum Stability Stability analysis Toughness |
title | Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20degradation%20mechanisms%20of%20Pt-free%20anode%20anion-exchange%20membrane%20fuel%20cells%20after%20durability%20testing&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Douglin,%20John%20C&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-04-30&rft.volume=12&rft.issue=17&rft.spage=1435&rft.epage=1448&rft.pages=1435-1448&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07065d&rft_dat=%3Cproquest_osti_%3E3049109477%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049109477&rft_id=info:pmid/&rfr_iscdi=true |