Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing

The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1435-1448
Hauptverfasser: Douglin, John C, Singh, Ramesh K, Yang-Neyerlin, Ami C, He, Cheng, Yassin, Karam, Miller, Hamish A, Pagliaro, Maria V, Capozzoli, Laura, Carbo-Argibay, Enrique, Brandon, Simon, Ferreira, Paulo J, Pivovar, Bryan S, Dekel, Dario R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1448
container_issue 17
container_start_page 1435
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 12
creator Douglin, John C
Singh, Ramesh K
Yang-Neyerlin, Ami C
He, Cheng
Yassin, Karam
Miller, Hamish A
Pagliaro, Maria V
Capozzoli, Laura
Carbo-Argibay, Enrique
Brandon, Simon
Ferreira, Paulo J
Pivovar, Bryan S
Dekel, Dario R
description The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H 2 -air (albeit CO 2 -free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm −2 and current densities up to 3.5 A cm −2 . Over a 200 h period of continuous operation in H 2 -air at a current density of 600 mA cm −2 , our model Pd/C-CeO 2 anode cell exhibits record stability (∼30 μV h −1 degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO 2 anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h −1 . Thorough in situ evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs. Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both in situ and ex situ analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.
doi_str_mv 10.1039/d3ta07065d
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2344980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3049109477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</originalsourceid><addsrcrecordid>eNpF0UtLAzEQAOBFFCzai3ch6E1YnWyym82xtPUBBT3Uc8jm0W7ZR02yYP-9WSs1h7z4mJlMkuQGwyMGwp80CRIYFLk-SyYZ5JAyyovz074sL5Op9zuIowQoOJ8kftkMqtYy1N0Gha1B2mycHM99h1qjtrKrfetRb9FHSK0zBsmu1-McRWq-R7ExkbaVk51BdjANUqZpPJI2GIf04GRVN3U4oGD8mOc6ubCy8Wb6t14ln8_L9fw1Xb2_vM1nq1QRSkOa5YUllQTKQFpLZc60oqBxiUGWWbwuCc6AKVVlmVaswpgXRkvNQUVKNblK7o5x-5hWeFWH-B7Vd51RQWQxBy8hovsj2rv-a4gFil0_uC7WJQhQjoFTxqJ6OCrleu-dsWLv6la6g8AgxuaLBVnPfpu_iPj2iJ1XJ_f_OeQHzU-BYg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049109477</pqid></control><display><type>article</type><title>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Douglin, John C ; Singh, Ramesh K ; Yang-Neyerlin, Ami C ; He, Cheng ; Yassin, Karam ; Miller, Hamish A ; Pagliaro, Maria V ; Capozzoli, Laura ; Carbo-Argibay, Enrique ; Brandon, Simon ; Ferreira, Paulo J ; Pivovar, Bryan S ; Dekel, Dario R</creator><creatorcontrib>Douglin, John C ; Singh, Ramesh K ; Yang-Neyerlin, Ami C ; He, Cheng ; Yassin, Karam ; Miller, Hamish A ; Pagliaro, Maria V ; Capozzoli, Laura ; Carbo-Argibay, Enrique ; Brandon, Simon ; Ferreira, Paulo J ; Pivovar, Bryan S ; Dekel, Dario R ; National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><description>The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H 2 -air (albeit CO 2 -free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm −2 and current densities up to 3.5 A cm −2 . Over a 200 h period of continuous operation in H 2 -air at a current density of 600 mA cm −2 , our model Pd/C-CeO 2 anode cell exhibits record stability (∼30 μV h −1 degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO 2 anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h −1 . Thorough in situ evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs. Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both in situ and ex situ analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta07065d</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>08 HYDROGEN ; 30 DIRECT ENERGY CONVERSION ; Anion exchanging ; anion-exchange membrane fuel cells ; Anions ; Anodes ; Carbon dioxide ; Catalysts ; cell durability ; Cerium oxides ; Current density ; Degradation ; Durability ; Electrocatalysts ; Fuel cells ; Fuel technology ; Ionomers ; Membranes ; Mitigation ; mitigation strategies ; Palladium ; Platinum ; Stability ; Stability analysis ; Toughness</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1435-1448</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</citedby><cites>FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</cites><orcidid>0000-0003-4151-1424 ; 0000-0003-1668-6476 ; 0000-0001-5718-8938 ; 0000-0001-7472-9564 ; 0000-0002-8610-0808 ; 0000000151815363 ; 0000000286100808 ; 0000000341511424 ; 0000000316686476 ; 0000000157188938 ; 0000000174729564</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2344980$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglin, John C</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yang-Neyerlin, Ami C</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Yassin, Karam</creatorcontrib><creatorcontrib>Miller, Hamish A</creatorcontrib><creatorcontrib>Pagliaro, Maria V</creatorcontrib><creatorcontrib>Capozzoli, Laura</creatorcontrib><creatorcontrib>Carbo-Argibay, Enrique</creatorcontrib><creatorcontrib>Brandon, Simon</creatorcontrib><creatorcontrib>Ferreira, Paulo J</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Dekel, Dario R</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><title>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H 2 -air (albeit CO 2 -free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm −2 and current densities up to 3.5 A cm −2 . Over a 200 h period of continuous operation in H 2 -air at a current density of 600 mA cm −2 , our model Pd/C-CeO 2 anode cell exhibits record stability (∼30 μV h −1 degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO 2 anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h −1 . Thorough in situ evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs. Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both in situ and ex situ analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.</description><subject>08 HYDROGEN</subject><subject>30 DIRECT ENERGY CONVERSION</subject><subject>Anion exchanging</subject><subject>anion-exchange membrane fuel cells</subject><subject>Anions</subject><subject>Anodes</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>cell durability</subject><subject>Cerium oxides</subject><subject>Current density</subject><subject>Degradation</subject><subject>Durability</subject><subject>Electrocatalysts</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Ionomers</subject><subject>Membranes</subject><subject>Mitigation</subject><subject>mitigation strategies</subject><subject>Palladium</subject><subject>Platinum</subject><subject>Stability</subject><subject>Stability analysis</subject><subject>Toughness</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpF0UtLAzEQAOBFFCzai3ch6E1YnWyym82xtPUBBT3Uc8jm0W7ZR02yYP-9WSs1h7z4mJlMkuQGwyMGwp80CRIYFLk-SyYZ5JAyyovz074sL5Op9zuIowQoOJ8kftkMqtYy1N0Gha1B2mycHM99h1qjtrKrfetRb9FHSK0zBsmu1-McRWq-R7ExkbaVk51BdjANUqZpPJI2GIf04GRVN3U4oGD8mOc6ubCy8Wb6t14ln8_L9fw1Xb2_vM1nq1QRSkOa5YUllQTKQFpLZc60oqBxiUGWWbwuCc6AKVVlmVaswpgXRkvNQUVKNblK7o5x-5hWeFWH-B7Vd51RQWQxBy8hovsj2rv-a4gFil0_uC7WJQhQjoFTxqJ6OCrleu-dsWLv6la6g8AgxuaLBVnPfpu_iPj2iJ1XJ_f_OeQHzU-BYg</recordid><startdate>20240430</startdate><enddate>20240430</enddate><creator>Douglin, John C</creator><creator>Singh, Ramesh K</creator><creator>Yang-Neyerlin, Ami C</creator><creator>He, Cheng</creator><creator>Yassin, Karam</creator><creator>Miller, Hamish A</creator><creator>Pagliaro, Maria V</creator><creator>Capozzoli, Laura</creator><creator>Carbo-Argibay, Enrique</creator><creator>Brandon, Simon</creator><creator>Ferreira, Paulo J</creator><creator>Pivovar, Bryan S</creator><creator>Dekel, Dario R</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4151-1424</orcidid><orcidid>https://orcid.org/0000-0003-1668-6476</orcidid><orcidid>https://orcid.org/0000-0001-5718-8938</orcidid><orcidid>https://orcid.org/0000-0001-7472-9564</orcidid><orcidid>https://orcid.org/0000-0002-8610-0808</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000286100808</orcidid><orcidid>https://orcid.org/0000000341511424</orcidid><orcidid>https://orcid.org/0000000316686476</orcidid><orcidid>https://orcid.org/0000000157188938</orcidid><orcidid>https://orcid.org/0000000174729564</orcidid></search><sort><creationdate>20240430</creationdate><title>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</title><author>Douglin, John C ; Singh, Ramesh K ; Yang-Neyerlin, Ami C ; He, Cheng ; Yassin, Karam ; Miller, Hamish A ; Pagliaro, Maria V ; Capozzoli, Laura ; Carbo-Argibay, Enrique ; Brandon, Simon ; Ferreira, Paulo J ; Pivovar, Bryan S ; Dekel, Dario R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-256f3ba0470aff4a57dc40d1810a82047831207ccb22dc7b1196edad90c57d4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>08 HYDROGEN</topic><topic>30 DIRECT ENERGY CONVERSION</topic><topic>Anion exchanging</topic><topic>anion-exchange membrane fuel cells</topic><topic>Anions</topic><topic>Anodes</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>cell durability</topic><topic>Cerium oxides</topic><topic>Current density</topic><topic>Degradation</topic><topic>Durability</topic><topic>Electrocatalysts</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Ionomers</topic><topic>Membranes</topic><topic>Mitigation</topic><topic>mitigation strategies</topic><topic>Palladium</topic><topic>Platinum</topic><topic>Stability</topic><topic>Stability analysis</topic><topic>Toughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglin, John C</creatorcontrib><creatorcontrib>Singh, Ramesh K</creatorcontrib><creatorcontrib>Yang-Neyerlin, Ami C</creatorcontrib><creatorcontrib>He, Cheng</creatorcontrib><creatorcontrib>Yassin, Karam</creatorcontrib><creatorcontrib>Miller, Hamish A</creatorcontrib><creatorcontrib>Pagliaro, Maria V</creatorcontrib><creatorcontrib>Capozzoli, Laura</creatorcontrib><creatorcontrib>Carbo-Argibay, Enrique</creatorcontrib><creatorcontrib>Brandon, Simon</creatorcontrib><creatorcontrib>Ferreira, Paulo J</creatorcontrib><creatorcontrib>Pivovar, Bryan S</creatorcontrib><creatorcontrib>Dekel, Dario R</creatorcontrib><creatorcontrib>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglin, John C</au><au>Singh, Ramesh K</au><au>Yang-Neyerlin, Ami C</au><au>He, Cheng</au><au>Yassin, Karam</au><au>Miller, Hamish A</au><au>Pagliaro, Maria V</au><au>Capozzoli, Laura</au><au>Carbo-Argibay, Enrique</au><au>Brandon, Simon</au><au>Ferreira, Paulo J</au><au>Pivovar, Bryan S</au><au>Dekel, Dario R</au><aucorp>National Renewable Energy Laboratory (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2024-04-30</date><risdate>2024</risdate><volume>12</volume><issue>17</issue><spage>1435</spage><epage>1448</epage><pages>1435-1448</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The development of anion-exchange membrane fuel cells (AEMFCs) has recently accelerated due to synergistic improvements yielding highly conductive membranes, stable ionomers, and enhanced alkaline electrocatalysts. However, cell durability, especially under realistic conditions, still poses a major challenge. Herein, we employ low-loadings of Pt-free Pd-based catalysts in the anode of AEMFCs and elucidate potential degradation mechanisms impacting long-term performance under conditions analogous to the real-world (high current density, H 2 -air (albeit CO 2 -free), and intermittent operation). Our high-performing AEMFCs achieve impressive performance with power densities approaching 1 W cm −2 and current densities up to 3.5 A cm −2 . Over a 200 h period of continuous operation in H 2 -air at a current density of 600 mA cm −2 , our model Pd/C-CeO 2 anode cell exhibits record stability (∼30 μV h −1 degradation) compared to the literature and up to 6× better stability than our Pd/C and commercial Pt/C anode cells. Following an 8 h shutdown, the Pd/C-CeO 2 anode cell was restarted and continued for an additional 300 h with a higher degradation rate of ∼600 μV h −1 . Thorough in situ evaluations and post-stability analyses provide insights into potential degradation mechanisms to be expected during extended operation under more realistic conditions and provide mitigation strategies to enable the widespread development of highly durable AEMFCs. Cell deterioration over time is one of the most perplexing obstacles to long-term fuel cell performance. In this study, we employed both in situ and ex situ analytical approaches to investigate the deterioration mechanisms of state-of-the-art AEMFCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta07065d</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4151-1424</orcidid><orcidid>https://orcid.org/0000-0003-1668-6476</orcidid><orcidid>https://orcid.org/0000-0001-5718-8938</orcidid><orcidid>https://orcid.org/0000-0001-7472-9564</orcidid><orcidid>https://orcid.org/0000-0002-8610-0808</orcidid><orcidid>https://orcid.org/0000000151815363</orcidid><orcidid>https://orcid.org/0000000286100808</orcidid><orcidid>https://orcid.org/0000000341511424</orcidid><orcidid>https://orcid.org/0000000316686476</orcidid><orcidid>https://orcid.org/0000000157188938</orcidid><orcidid>https://orcid.org/0000000174729564</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2024-04, Vol.12 (17), p.1435-1448
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_2344980
source Royal Society Of Chemistry Journals 2008-
subjects 08 HYDROGEN
30 DIRECT ENERGY CONVERSION
Anion exchanging
anion-exchange membrane fuel cells
Anions
Anodes
Carbon dioxide
Catalysts
cell durability
Cerium oxides
Current density
Degradation
Durability
Electrocatalysts
Fuel cells
Fuel technology
Ionomers
Membranes
Mitigation
mitigation strategies
Palladium
Platinum
Stability
Stability analysis
Toughness
title Elucidating the degradation mechanisms of Pt-free anode anion-exchange membrane fuel cells after durability testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elucidating%20the%20degradation%20mechanisms%20of%20Pt-free%20anode%20anion-exchange%20membrane%20fuel%20cells%20after%20durability%20testing&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Douglin,%20John%20C&rft.aucorp=National%20Renewable%20Energy%20Laboratory%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2024-04-30&rft.volume=12&rft.issue=17&rft.spage=1435&rft.epage=1448&rft.pages=1435-1448&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta07065d&rft_dat=%3Cproquest_osti_%3E3049109477%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3049109477&rft_id=info:pmid/&rfr_iscdi=true