Simulations of radiatively cooled magnetic reconnection driven by pulsed power

Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2024-04, Vol.90 (2), Article 905900215
Hauptverfasser: Datta, Rishabh, Crilly, Aidan, Chittenden, Jeremy P., Chowdhry, Simran, Chandler, Katherine, Chaturvedi, Nikita, Myers, Clayton E., Fox, William R., Hansen, Stephanie B., Jennings, Chris A., Ji, Hantao, Kuranz, Carolyn C., Lebedev, Sergey V., Uzdensky, Dmitri A., Hare, Jack D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of plasma physics
container_volume 90
creator Datta, Rishabh
Crilly, Aidan
Chittenden, Jeremy P.
Chowdhry, Simran
Chandler, Katherine
Chaturvedi, Nikita
Myers, Clayton E.
Fox, William R.
Hansen, Stephanie B.
Jennings, Chris A.
Ji, Hantao
Kuranz, Carolyn C.
Lebedev, Sergey V.
Uzdensky, Dmitri A.
Hare, Jack D.
description Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and $P_{1/3}$ multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number $M_A \approx 1.5$), supersonic (Sonic Mach number $M_S \approx 4-5$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio $L/\delta \approx 100$, Lundquist number $S_L \approx 400$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = $\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.
doi_str_mv 10.1017/S0022377824000448
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2342094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377824000448</cupid><sourcerecordid>3041079230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a23a11eb53459fae598c8a9bcb852d069cf737aa74386c6f2d7d4650391c9f653</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHdB19WbR5tmKYMvGHQxug5pmo4Z2qYmrTL_3gwz4EJcXQ73O4fDQeiSwA0BIm5XAJQyIUrKAYDz8gjNCC9kJkoQx2i2e2e7_yk6i3GTGAZUzNDLynVTq0fn-4h9g4OuXVJftt1i431ra9zpdW9HZ3Cwxve9NTsY1yFBPa62eJjamLDBf9twjk4aneTF4c7R-8P92-IpW74-Pi_ulplhnI-ZpkwTYquc8Vw22uayNKWWlanKnNZQSNMIJrQWnJWFKRpai5oXOTBJjGyKnM3R1T7Xx9GpaNxozcehnaKMU5A8Qdd7aAj-c7JxVBs_hT71Ugw4ASEpg0SRPWWCjzHYRg3BdTpsFQG121b92TZ52MGjuyq4em1_o_93_QBXIXrB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3041079230</pqid></control><display><type>article</type><title>Simulations of radiatively cooled magnetic reconnection driven by pulsed power</title><source>Cambridge University Press Journals Complete</source><creator>Datta, Rishabh ; Crilly, Aidan ; Chittenden, Jeremy P. ; Chowdhry, Simran ; Chandler, Katherine ; Chaturvedi, Nikita ; Myers, Clayton E. ; Fox, William R. ; Hansen, Stephanie B. ; Jennings, Chris A. ; Ji, Hantao ; Kuranz, Carolyn C. ; Lebedev, Sergey V. ; Uzdensky, Dmitri A. ; Hare, Jack D.</creator><creatorcontrib>Datta, Rishabh ; Crilly, Aidan ; Chittenden, Jeremy P. ; Chowdhry, Simran ; Chandler, Katherine ; Chaturvedi, Nikita ; Myers, Clayton E. ; Fox, William R. ; Hansen, Stephanie B. ; Jennings, Chris A. ; Ji, Hantao ; Kuranz, Carolyn C. ; Lebedev, Sergey V. ; Uzdensky, Dmitri A. ; Hare, Jack D. ; Univ. of Rochester, NY (United States)</creatorcontrib><description>Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and $P_{1/3}$ multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number $M_A \approx 1.5$), supersonic (Sonic Mach number $M_S \approx 4-5$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio $L/\delta \approx 100$, Lundquist number $S_L \approx 400$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = $\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377824000448</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY ; Accretion disks ; Aspect ratio ; astrophysical plasmas ; Black holes ; Cooling ; Cooling rate ; Current sheets ; Energy ; Exploding wires ; Internal energy ; Kinetic energy ; Local thermodynamic equilibrium ; Mach number ; Magnetic fields ; Magnetic islands ; Numerical analysis ; plasma instabilities ; plasma simulation ; Pulsar magnetospheres ; Pulsars ; Radiation ; Radiation effects ; Radiation transport ; Simulation ; Three dimensional models ; Topology ; Transportation planning</subject><ispartof>Journal of plasma physics, 2024-04, Vol.90 (2), Article 905900215</ispartof><rights>Copyright © The Author(s), 2024. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a23a11eb53459fae598c8a9bcb852d069cf737aa74386c6f2d7d4650391c9f653</citedby><cites>FETCH-LOGICAL-c344t-a23a11eb53459fae598c8a9bcb852d069cf737aa74386c6f2d7d4650391c9f653</cites><orcidid>0000-0001-8792-6698 ; 0000-0002-7090-828X ; 0000-0001-9611-8449 ; 0000-0003-4539-8406 ; 0000000345398406 ; 0000000187926698 ; 0000000196118449 ; 000000027090828X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377824000448/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2342094$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Datta, Rishabh</creatorcontrib><creatorcontrib>Crilly, Aidan</creatorcontrib><creatorcontrib>Chittenden, Jeremy P.</creatorcontrib><creatorcontrib>Chowdhry, Simran</creatorcontrib><creatorcontrib>Chandler, Katherine</creatorcontrib><creatorcontrib>Chaturvedi, Nikita</creatorcontrib><creatorcontrib>Myers, Clayton E.</creatorcontrib><creatorcontrib>Fox, William R.</creatorcontrib><creatorcontrib>Hansen, Stephanie B.</creatorcontrib><creatorcontrib>Jennings, Chris A.</creatorcontrib><creatorcontrib>Ji, Hantao</creatorcontrib><creatorcontrib>Kuranz, Carolyn C.</creatorcontrib><creatorcontrib>Lebedev, Sergey V.</creatorcontrib><creatorcontrib>Uzdensky, Dmitri A.</creatorcontrib><creatorcontrib>Hare, Jack D.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><title>Simulations of radiatively cooled magnetic reconnection driven by pulsed power</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and $P_{1/3}$ multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number $M_A \approx 1.5$), supersonic (Sonic Mach number $M_S \approx 4-5$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio $L/\delta \approx 100$, Lundquist number $S_L \approx 400$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = $\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.</description><subject>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</subject><subject>Accretion disks</subject><subject>Aspect ratio</subject><subject>astrophysical plasmas</subject><subject>Black holes</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Current sheets</subject><subject>Energy</subject><subject>Exploding wires</subject><subject>Internal energy</subject><subject>Kinetic energy</subject><subject>Local thermodynamic equilibrium</subject><subject>Mach number</subject><subject>Magnetic fields</subject><subject>Magnetic islands</subject><subject>Numerical analysis</subject><subject>plasma instabilities</subject><subject>plasma simulation</subject><subject>Pulsar magnetospheres</subject><subject>Pulsars</subject><subject>Radiation</subject><subject>Radiation effects</subject><subject>Radiation transport</subject><subject>Simulation</subject><subject>Three dimensional models</subject><subject>Topology</subject><subject>Transportation planning</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHdB19WbR5tmKYMvGHQxug5pmo4Z2qYmrTL_3gwz4EJcXQ73O4fDQeiSwA0BIm5XAJQyIUrKAYDz8gjNCC9kJkoQx2i2e2e7_yk6i3GTGAZUzNDLynVTq0fn-4h9g4OuXVJftt1i431ra9zpdW9HZ3Cwxve9NTsY1yFBPa62eJjamLDBf9twjk4aneTF4c7R-8P92-IpW74-Pi_ulplhnI-ZpkwTYquc8Vw22uayNKWWlanKnNZQSNMIJrQWnJWFKRpai5oXOTBJjGyKnM3R1T7Xx9GpaNxozcehnaKMU5A8Qdd7aAj-c7JxVBs_hT71Ugw4ASEpg0SRPWWCjzHYRg3BdTpsFQG121b92TZ52MGjuyq4em1_o_93_QBXIXrB</recordid><startdate>20240419</startdate><enddate>20240419</enddate><creator>Datta, Rishabh</creator><creator>Crilly, Aidan</creator><creator>Chittenden, Jeremy P.</creator><creator>Chowdhry, Simran</creator><creator>Chandler, Katherine</creator><creator>Chaturvedi, Nikita</creator><creator>Myers, Clayton E.</creator><creator>Fox, William R.</creator><creator>Hansen, Stephanie B.</creator><creator>Jennings, Chris A.</creator><creator>Ji, Hantao</creator><creator>Kuranz, Carolyn C.</creator><creator>Lebedev, Sergey V.</creator><creator>Uzdensky, Dmitri A.</creator><creator>Hare, Jack D.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-8792-6698</orcidid><orcidid>https://orcid.org/0000-0002-7090-828X</orcidid><orcidid>https://orcid.org/0000-0001-9611-8449</orcidid><orcidid>https://orcid.org/0000-0003-4539-8406</orcidid><orcidid>https://orcid.org/0000000345398406</orcidid><orcidid>https://orcid.org/0000000187926698</orcidid><orcidid>https://orcid.org/0000000196118449</orcidid><orcidid>https://orcid.org/000000027090828X</orcidid></search><sort><creationdate>20240419</creationdate><title>Simulations of radiatively cooled magnetic reconnection driven by pulsed power</title><author>Datta, Rishabh ; Crilly, Aidan ; Chittenden, Jeremy P. ; Chowdhry, Simran ; Chandler, Katherine ; Chaturvedi, Nikita ; Myers, Clayton E. ; Fox, William R. ; Hansen, Stephanie B. ; Jennings, Chris A. ; Ji, Hantao ; Kuranz, Carolyn C. ; Lebedev, Sergey V. ; Uzdensky, Dmitri A. ; Hare, Jack D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a23a11eb53459fae598c8a9bcb852d069cf737aa74386c6f2d7d4650391c9f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>70 PLASMA PHYSICS AND FUSION TECHNOLOGY</topic><topic>Accretion disks</topic><topic>Aspect ratio</topic><topic>astrophysical plasmas</topic><topic>Black holes</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Current sheets</topic><topic>Energy</topic><topic>Exploding wires</topic><topic>Internal energy</topic><topic>Kinetic energy</topic><topic>Local thermodynamic equilibrium</topic><topic>Mach number</topic><topic>Magnetic fields</topic><topic>Magnetic islands</topic><topic>Numerical analysis</topic><topic>plasma instabilities</topic><topic>plasma simulation</topic><topic>Pulsar magnetospheres</topic><topic>Pulsars</topic><topic>Radiation</topic><topic>Radiation effects</topic><topic>Radiation transport</topic><topic>Simulation</topic><topic>Three dimensional models</topic><topic>Topology</topic><topic>Transportation planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Datta, Rishabh</creatorcontrib><creatorcontrib>Crilly, Aidan</creatorcontrib><creatorcontrib>Chittenden, Jeremy P.</creatorcontrib><creatorcontrib>Chowdhry, Simran</creatorcontrib><creatorcontrib>Chandler, Katherine</creatorcontrib><creatorcontrib>Chaturvedi, Nikita</creatorcontrib><creatorcontrib>Myers, Clayton E.</creatorcontrib><creatorcontrib>Fox, William R.</creatorcontrib><creatorcontrib>Hansen, Stephanie B.</creatorcontrib><creatorcontrib>Jennings, Chris A.</creatorcontrib><creatorcontrib>Ji, Hantao</creatorcontrib><creatorcontrib>Kuranz, Carolyn C.</creatorcontrib><creatorcontrib>Lebedev, Sergey V.</creatorcontrib><creatorcontrib>Uzdensky, Dmitri A.</creatorcontrib><creatorcontrib>Hare, Jack D.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Datta, Rishabh</au><au>Crilly, Aidan</au><au>Chittenden, Jeremy P.</au><au>Chowdhry, Simran</au><au>Chandler, Katherine</au><au>Chaturvedi, Nikita</au><au>Myers, Clayton E.</au><au>Fox, William R.</au><au>Hansen, Stephanie B.</au><au>Jennings, Chris A.</au><au>Ji, Hantao</au><au>Kuranz, Carolyn C.</au><au>Lebedev, Sergey V.</au><au>Uzdensky, Dmitri A.</au><au>Hare, Jack D.</au><aucorp>Univ. of Rochester, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations of radiatively cooled magnetic reconnection driven by pulsed power</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2024-04-19</date><risdate>2024</risdate><volume>90</volume><issue>2</issue><artnum>905900215</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>Magnetic reconnection is an important process in astrophysical environments, as it reconfigures magnetic field topology and converts magnetic energy into thermal and kinetic energy. In extreme astrophysical systems, such as black hole coronae and pulsar magnetospheres, radiative cooling modifies the energy partition by radiating away internal energy, which can lead to the radiative collapse of the reconnection layer. In this paper, we perform two- and three-dimensional simulations to model the MARZ (Magnetic Reconnection on Z) experiments, which are designed to access cooling rates in the laboratory necessary to investigate reconnection in a previously unexplored radiatively cooled regime. These simulations are performed in GORGON, an Eulerian two-temperature resistive magnetohydrodynamic code, which models the experimental geometry comprising two exploding wire arrays driven by 20 MA of current on the Z machine (Sandia National Laboratories). Radiative losses are implemented using non-local thermodynamic equilibrium tables computed using the atomic code Spk, and we probe the effects of radiation transport by implementing both a local radiation loss model and $P_{1/3}$ multi-group radiation transport. The load produces highly collisional, super-Alfvénic (Alfvén Mach number $M_A \approx 1.5$), supersonic (Sonic Mach number $M_S \approx 4-5$) strongly driven plasma flows which generate an elongated reconnection layer (Aspect Ratio $L/\delta \approx 100$, Lundquist number $S_L \approx 400$). The reconnection layer undergoes radiative collapse when the radiative losses exceed the rates of ohmic and compressional heating (cooling rate/hydrodynamic transit rate = $\tau _{\text {cool}}^{-1}/\tau _{H}^{-1}\approx 100$); this generates a cold strongly compressed current sheet, leading to an accelerated reconnection rate, consistent with theoretical predictions. Finally, the current sheet is also unstable to the plasmoid instability, but the magnetic islands are extinguished by strong radiative cooling before ejection from the layer.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377824000448</doi><tpages>37</tpages><orcidid>https://orcid.org/0000-0001-8792-6698</orcidid><orcidid>https://orcid.org/0000-0002-7090-828X</orcidid><orcidid>https://orcid.org/0000-0001-9611-8449</orcidid><orcidid>https://orcid.org/0000-0003-4539-8406</orcidid><orcidid>https://orcid.org/0000000345398406</orcidid><orcidid>https://orcid.org/0000000187926698</orcidid><orcidid>https://orcid.org/0000000196118449</orcidid><orcidid>https://orcid.org/000000027090828X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2024-04, Vol.90 (2), Article 905900215
issn 0022-3778
1469-7807
language eng
recordid cdi_osti_scitechconnect_2342094
source Cambridge University Press Journals Complete
subjects 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Accretion disks
Aspect ratio
astrophysical plasmas
Black holes
Cooling
Cooling rate
Current sheets
Energy
Exploding wires
Internal energy
Kinetic energy
Local thermodynamic equilibrium
Mach number
Magnetic fields
Magnetic islands
Numerical analysis
plasma instabilities
plasma simulation
Pulsar magnetospheres
Pulsars
Radiation
Radiation effects
Radiation transport
Simulation
Three dimensional models
Topology
Transportation planning
title Simulations of radiatively cooled magnetic reconnection driven by pulsed power
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20of%20radiatively%20cooled%20magnetic%20reconnection%20driven%20by%20pulsed%20power&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Datta,%20Rishabh&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States)&rft.date=2024-04-19&rft.volume=90&rft.issue=2&rft.artnum=905900215&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377824000448&rft_dat=%3Cproquest_osti_%3E3041079230%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3041079230&rft_id=info:pmid/&rft_cupid=10_1017_S0022377824000448&rfr_iscdi=true