κmonty: a Monte Carlo Compton scattering code including non-thermal electrons
ABSTRACT Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distributi...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2023-10, Vol.526 (4), p.5326-5336 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5336 |
---|---|
container_issue | 4 |
container_start_page | 5326 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 526 |
creator | Davelaar, Jordy Ryan, Benjamin R Wong, George N Bronzwaer, Thomas Olivares, Hector Mościbrodzka, Monika Gammie, Charles F Falcke, Heino |
description | ABSTRACT
Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models. |
doi_str_mv | 10.1093/mnras/stad3023 |
format | Article |
fullrecord | <record><control><sourceid>oup_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2340872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3023</oup_id><sourcerecordid>10.1093/mnras/stad3023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqGwMltsDGnPdj7ZUMSXVGCB2XIuNg1K7Mp2h_41fgS_iZSWmenupOfeOz2EXDKYM6jFYrRehUWIqhPAxRFJmCjylNdFcUwSAJGnVcnYKTkL4RMAMsGLhLx8f43Oxu0NVfR5ajRtlB8cbdy4js7SgCpG7Xv7QdF1mvYWh023G62zaVxpP6qB6kFj9M6Gc3Ji1BD0xaHOyPv93VvzmC5fH56a22WKIoOY5loZhYZz4KUqqzbr8ipXlamNUa3S3EANpmWZaDWwDuuKaRBl0Wo0bckQxYxc7XNdiL0M2EeNK3TWTn9IPt2oSj5B8z2E3oXgtZFr34_KbyUDuVMmf5XJP2XTwvUhdbP-j_0BG3VyBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Davelaar, Jordy ; Ryan, Benjamin R ; Wong, George N ; Bronzwaer, Thomas ; Olivares, Hector ; Mościbrodzka, Monika ; Gammie, Charles F ; Falcke, Heino</creator><creatorcontrib>Davelaar, Jordy ; Ryan, Benjamin R ; Wong, George N ; Bronzwaer, Thomas ; Olivares, Hector ; Mościbrodzka, Monika ; Gammie, Charles F ; Falcke, Heino ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>ABSTRACT
Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3023</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Compton scattering ; nonthermal particles ; plasmas ; radiation transport</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2023-10, Vol.526 (4), p.5326-5336</ispartof><rights>2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</citedby><cites>FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</cites><orcidid>0000-0002-2685-2434 ; 0000-0002-4661-6332 ; 0000-0003-1151-3971 ; 0000000311513971 ; 0000000246616332 ; 0000000226852434 ; 0000000189394461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2340872$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davelaar, Jordy</creatorcontrib><creatorcontrib>Ryan, Benjamin R</creatorcontrib><creatorcontrib>Wong, George N</creatorcontrib><creatorcontrib>Bronzwaer, Thomas</creatorcontrib><creatorcontrib>Olivares, Hector</creatorcontrib><creatorcontrib>Mościbrodzka, Monika</creatorcontrib><creatorcontrib>Gammie, Charles F</creatorcontrib><creatorcontrib>Falcke, Heino</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT
Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Compton scattering</subject><subject>nonthermal particles</subject><subject>plasmas</subject><subject>radiation transport</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkD1PwzAQhi0EEqGwMltsDGnPdj7ZUMSXVGCB2XIuNg1K7Mp2h_41fgS_iZSWmenupOfeOz2EXDKYM6jFYrRehUWIqhPAxRFJmCjylNdFcUwSAJGnVcnYKTkL4RMAMsGLhLx8f43Oxu0NVfR5ajRtlB8cbdy4js7SgCpG7Xv7QdF1mvYWh023G62zaVxpP6qB6kFj9M6Gc3Ji1BD0xaHOyPv93VvzmC5fH56a22WKIoOY5loZhYZz4KUqqzbr8ipXlamNUa3S3EANpmWZaDWwDuuKaRBl0Wo0bckQxYxc7XNdiL0M2EeNK3TWTn9IPt2oSj5B8z2E3oXgtZFr34_KbyUDuVMmf5XJP2XTwvUhdbP-j_0BG3VyBg</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Davelaar, Jordy</creator><creator>Ryan, Benjamin R</creator><creator>Wong, George N</creator><creator>Bronzwaer, Thomas</creator><creator>Olivares, Hector</creator><creator>Mościbrodzka, Monika</creator><creator>Gammie, Charles F</creator><creator>Falcke, Heino</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2685-2434</orcidid><orcidid>https://orcid.org/0000-0002-4661-6332</orcidid><orcidid>https://orcid.org/0000-0003-1151-3971</orcidid><orcidid>https://orcid.org/0000000311513971</orcidid><orcidid>https://orcid.org/0000000246616332</orcidid><orcidid>https://orcid.org/0000000226852434</orcidid><orcidid>https://orcid.org/0000000189394461</orcidid></search><sort><creationdate>20231020</creationdate><title>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</title><author>Davelaar, Jordy ; Ryan, Benjamin R ; Wong, George N ; Bronzwaer, Thomas ; Olivares, Hector ; Mościbrodzka, Monika ; Gammie, Charles F ; Falcke, Heino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Compton scattering</topic><topic>nonthermal particles</topic><topic>plasmas</topic><topic>radiation transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davelaar, Jordy</creatorcontrib><creatorcontrib>Ryan, Benjamin R</creatorcontrib><creatorcontrib>Wong, George N</creatorcontrib><creatorcontrib>Bronzwaer, Thomas</creatorcontrib><creatorcontrib>Olivares, Hector</creatorcontrib><creatorcontrib>Mościbrodzka, Monika</creatorcontrib><creatorcontrib>Gammie, Charles F</creatorcontrib><creatorcontrib>Falcke, Heino</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davelaar, Jordy</au><au>Ryan, Benjamin R</au><au>Wong, George N</au><au>Bronzwaer, Thomas</au><au>Olivares, Hector</au><au>Mościbrodzka, Monika</au><au>Gammie, Charles F</au><au>Falcke, Heino</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-10-20</date><risdate>2023</risdate><volume>526</volume><issue>4</issue><spage>5326</spage><epage>5336</epage><pages>5326-5336</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT
Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.</abstract><cop>United States</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2685-2434</orcidid><orcidid>https://orcid.org/0000-0002-4661-6332</orcidid><orcidid>https://orcid.org/0000-0003-1151-3971</orcidid><orcidid>https://orcid.org/0000000311513971</orcidid><orcidid>https://orcid.org/0000000246616332</orcidid><orcidid>https://orcid.org/0000000226852434</orcidid><orcidid>https://orcid.org/0000000189394461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2023-10, Vol.526 (4), p.5326-5336 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_osti_scitechconnect_2340872 |
source | Access via Oxford University Press (Open Access Collection) |
subjects | ASTRONOMY AND ASTROPHYSICS Compton scattering nonthermal particles plasmas radiation transport |
title | κmonty: a Monte Carlo Compton scattering code including non-thermal electrons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%BAmonty:%20a%20Monte%20Carlo%20Compton%20scattering%20code%20including%20non-thermal%20electrons&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Davelaar,%20Jordy&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2023-10-20&rft.volume=526&rft.issue=4&rft.spage=5326&rft.epage=5336&rft.pages=5326-5336&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3023&rft_dat=%3Coup_osti_%3E10.1093/mnras/stad3023%3C/oup_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3023&rfr_iscdi=true |