κmonty: a Monte Carlo Compton scattering code including non-thermal electrons

ABSTRACT Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2023-10, Vol.526 (4), p.5326-5336
Hauptverfasser: Davelaar, Jordy, Ryan, Benjamin R, Wong, George N, Bronzwaer, Thomas, Olivares, Hector, Mościbrodzka, Monika, Gammie, Charles F, Falcke, Heino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5336
container_issue 4
container_start_page 5326
container_title Monthly notices of the Royal Astronomical Society
container_volume 526
creator Davelaar, Jordy
Ryan, Benjamin R
Wong, George N
Bronzwaer, Thomas
Olivares, Hector
Mościbrodzka, Monika
Gammie, Charles F
Falcke, Heino
description ABSTRACT Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.
doi_str_mv 10.1093/mnras/stad3023
format Article
fullrecord <record><control><sourceid>oup_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2340872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stad3023</oup_id><sourcerecordid>10.1093/mnras/stad3023</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EEqGwMltsDGnPdj7ZUMSXVGCB2XIuNg1K7Mp2h_41fgS_iZSWmenupOfeOz2EXDKYM6jFYrRehUWIqhPAxRFJmCjylNdFcUwSAJGnVcnYKTkL4RMAMsGLhLx8f43Oxu0NVfR5ajRtlB8cbdy4js7SgCpG7Xv7QdF1mvYWh023G62zaVxpP6qB6kFj9M6Gc3Ji1BD0xaHOyPv93VvzmC5fH56a22WKIoOY5loZhYZz4KUqqzbr8ipXlamNUa3S3EANpmWZaDWwDuuKaRBl0Wo0bckQxYxc7XNdiL0M2EeNK3TWTn9IPt2oSj5B8z2E3oXgtZFr34_KbyUDuVMmf5XJP2XTwvUhdbP-j_0BG3VyBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>Davelaar, Jordy ; Ryan, Benjamin R ; Wong, George N ; Bronzwaer, Thomas ; Olivares, Hector ; Mościbrodzka, Monika ; Gammie, Charles F ; Falcke, Heino</creator><creatorcontrib>Davelaar, Jordy ; Ryan, Benjamin R ; Wong, George N ; Bronzwaer, Thomas ; Olivares, Hector ; Mościbrodzka, Monika ; Gammie, Charles F ; Falcke, Heino ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>ABSTRACT Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stad3023</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>ASTRONOMY AND ASTROPHYSICS ; Compton scattering ; nonthermal particles ; plasmas ; radiation transport</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2023-10, Vol.526 (4), p.5326-5336</ispartof><rights>2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</citedby><cites>FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</cites><orcidid>0000-0002-2685-2434 ; 0000-0002-4661-6332 ; 0000-0003-1151-3971 ; 0000000311513971 ; 0000000246616332 ; 0000000226852434 ; 0000000189394461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,1604,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2340872$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davelaar, Jordy</creatorcontrib><creatorcontrib>Ryan, Benjamin R</creatorcontrib><creatorcontrib>Wong, George N</creatorcontrib><creatorcontrib>Bronzwaer, Thomas</creatorcontrib><creatorcontrib>Olivares, Hector</creatorcontrib><creatorcontrib>Mościbrodzka, Monika</creatorcontrib><creatorcontrib>Gammie, Charles F</creatorcontrib><creatorcontrib>Falcke, Heino</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</title><title>Monthly notices of the Royal Astronomical Society</title><description>ABSTRACT Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.</description><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Compton scattering</subject><subject>nonthermal particles</subject><subject>plasmas</subject><subject>radiation transport</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkD1PwzAQhi0EEqGwMltsDGnPdj7ZUMSXVGCB2XIuNg1K7Mp2h_41fgS_iZSWmenupOfeOz2EXDKYM6jFYrRehUWIqhPAxRFJmCjylNdFcUwSAJGnVcnYKTkL4RMAMsGLhLx8f43Oxu0NVfR5ajRtlB8cbdy4js7SgCpG7Xv7QdF1mvYWh023G62zaVxpP6qB6kFj9M6Gc3Ji1BD0xaHOyPv93VvzmC5fH56a22WKIoOY5loZhYZz4KUqqzbr8ipXlamNUa3S3EANpmWZaDWwDuuKaRBl0Wo0bckQxYxc7XNdiL0M2EeNK3TWTn9IPt2oSj5B8z2E3oXgtZFr34_KbyUDuVMmf5XJP2XTwvUhdbP-j_0BG3VyBg</recordid><startdate>20231020</startdate><enddate>20231020</enddate><creator>Davelaar, Jordy</creator><creator>Ryan, Benjamin R</creator><creator>Wong, George N</creator><creator>Bronzwaer, Thomas</creator><creator>Olivares, Hector</creator><creator>Mościbrodzka, Monika</creator><creator>Gammie, Charles F</creator><creator>Falcke, Heino</creator><general>Oxford University Press</general><scope>TOX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-2685-2434</orcidid><orcidid>https://orcid.org/0000-0002-4661-6332</orcidid><orcidid>https://orcid.org/0000-0003-1151-3971</orcidid><orcidid>https://orcid.org/0000000311513971</orcidid><orcidid>https://orcid.org/0000000246616332</orcidid><orcidid>https://orcid.org/0000000226852434</orcidid><orcidid>https://orcid.org/0000000189394461</orcidid></search><sort><creationdate>20231020</creationdate><title>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</title><author>Davelaar, Jordy ; Ryan, Benjamin R ; Wong, George N ; Bronzwaer, Thomas ; Olivares, Hector ; Mościbrodzka, Monika ; Gammie, Charles F ; Falcke, Heino</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-5eafacf22027a78b4d585a8f9ffabae2f090fb143be01dc981e0376becfb71cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Compton scattering</topic><topic>nonthermal particles</topic><topic>plasmas</topic><topic>radiation transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davelaar, Jordy</creatorcontrib><creatorcontrib>Ryan, Benjamin R</creatorcontrib><creatorcontrib>Wong, George N</creatorcontrib><creatorcontrib>Bronzwaer, Thomas</creatorcontrib><creatorcontrib>Olivares, Hector</creatorcontrib><creatorcontrib>Mościbrodzka, Monika</creatorcontrib><creatorcontrib>Gammie, Charles F</creatorcontrib><creatorcontrib>Falcke, Heino</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davelaar, Jordy</au><au>Ryan, Benjamin R</au><au>Wong, George N</au><au>Bronzwaer, Thomas</au><au>Olivares, Hector</au><au>Mościbrodzka, Monika</au><au>Gammie, Charles F</au><au>Falcke, Heino</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>κmonty: a Monte Carlo Compton scattering code including non-thermal electrons</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2023-10-20</date><risdate>2023</risdate><volume>526</volume><issue>4</issue><spage>5326</spage><epage>5336</epage><pages>5326-5336</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>ABSTRACT Low-luminosity active galactic nuclei are strong sources of X-ray emission produced by Compton scattering originating from the accretion flows surrounding their supermassive black holes. The shape and energy of the resulting spectrum depend on the shape of the underlying electron distribution function (DF). In this work, we present an extended version of the grmonty code, called κmonty. The grmonty code previously only included a thermal Maxwell–Jütner electron DF. We extend the grmonty code with non-thermal electron DFs, namely the κ and power-law DFs, implement Cartesian Kerr–Schild coordinates, accelerate the code with mpi, and couple the code to the non-uniform adaptive mesh refinement grid data from the general relativistic magnetohydrodynamics code bhac. For the Compton scattering process, we derive two sampling kernels for both DFs. Finally, we present a series of code tests to verify the accuracy of our schemes. The implementation of non-thermal DFs opens the possibility of studying the effect of non-thermal emission on previously developed black hole accretion models.</abstract><cop>United States</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stad3023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2685-2434</orcidid><orcidid>https://orcid.org/0000-0002-4661-6332</orcidid><orcidid>https://orcid.org/0000-0003-1151-3971</orcidid><orcidid>https://orcid.org/0000000311513971</orcidid><orcidid>https://orcid.org/0000000246616332</orcidid><orcidid>https://orcid.org/0000000226852434</orcidid><orcidid>https://orcid.org/0000000189394461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2023-10, Vol.526 (4), p.5326-5336
issn 0035-8711
1365-2966
language eng
recordid cdi_osti_scitechconnect_2340872
source Access via Oxford University Press (Open Access Collection)
subjects ASTRONOMY AND ASTROPHYSICS
Compton scattering
nonthermal particles
plasmas
radiation transport
title κmonty: a Monte Carlo Compton scattering code including non-thermal electrons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T08%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%BAmonty:%20a%20Monte%20Carlo%20Compton%20scattering%20code%20including%20non-thermal%20electrons&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Davelaar,%20Jordy&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2023-10-20&rft.volume=526&rft.issue=4&rft.spage=5326&rft.epage=5336&rft.pages=5326-5336&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stad3023&rft_dat=%3Coup_osti_%3E10.1093/mnras/stad3023%3C/oup_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stad3023&rfr_iscdi=true