A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia

Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning with applications 2023-11, Vol.15
Hauptverfasser: McSpadden, Diana, Goldenberg, Steven, Roy, Binata, Schram, Malachi, Goodall, Jonathan L., Richter, Heather
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Machine learning with applications
container_volume 15
creator McSpadden, Diana
Goldenberg, Steven
Roy, Binata
Schram, Malachi
Goodall, Jonathan L.
Richter, Heather
description Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2339786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339786</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23397863</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgChb1HQ5nC20itY4iipOTuJaQXutpmpNcfH8RHByd_n_4RirTVVXltd4U45-fqoXIvSgKXZelMetMNTtwPDxtJOEA3MFg3Y0CgkcbA4Ue5BUj9zYhDNyilw-SFBFTLs56hM4ztx9JAc4cO_aPFVwp9hTIztWks15w8e1MLY-Hy_6UsyRqxFFCd3McArrUaGO2m7oyf6E31BJGhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McSpadden, Diana ; Goldenberg, Steven ; Roy, Binata ; Schram, Malachi ; Goodall, Jonathan L. ; Richter, Heather</creator><creatorcontrib>McSpadden, Diana ; Goldenberg, Steven ; Roy, Binata ; Schram, Malachi ; Goodall, Jonathan L. ; Richter, Heather ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><description>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</description><identifier>ISSN: 2666-8270</identifier><identifier>EISSN: 2666-8270</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>ENVIRONMENTAL SCIENCES ; GRU ; LSTM ; machine learning decision support ; RNN ; street-scale flooding</subject><ispartof>Machine learning with applications, 2023-11, Vol.15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000285201631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2339786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McSpadden, Diana</creatorcontrib><creatorcontrib>Goldenberg, Steven</creatorcontrib><creatorcontrib>Roy, Binata</creatorcontrib><creatorcontrib>Schram, Malachi</creatorcontrib><creatorcontrib>Goodall, Jonathan L.</creatorcontrib><creatorcontrib>Richter, Heather</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><title>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</title><title>Machine learning with applications</title><description>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</description><subject>ENVIRONMENTAL SCIENCES</subject><subject>GRU</subject><subject>LSTM</subject><subject>machine learning decision support</subject><subject>RNN</subject><subject>street-scale flooding</subject><issn>2666-8270</issn><issn>2666-8270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQgOEgChb1HQ5nC20itY4iipOTuJaQXutpmpNcfH8RHByd_n_4RirTVVXltd4U45-fqoXIvSgKXZelMetMNTtwPDxtJOEA3MFg3Y0CgkcbA4Ue5BUj9zYhDNyilw-SFBFTLs56hM4ztx9JAc4cO_aPFVwp9hTIztWks15w8e1MLY-Hy_6UsyRqxFFCd3McArrUaGO2m7oyf6E31BJGhw</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>McSpadden, Diana</creator><creator>Goldenberg, Steven</creator><creator>Roy, Binata</creator><creator>Schram, Malachi</creator><creator>Goodall, Jonathan L.</creator><creator>Richter, Heather</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000285201631</orcidid></search><sort><creationdate>20231129</creationdate><title>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</title><author>McSpadden, Diana ; Goldenberg, Steven ; Roy, Binata ; Schram, Malachi ; Goodall, Jonathan L. ; Richter, Heather</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23397863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ENVIRONMENTAL SCIENCES</topic><topic>GRU</topic><topic>LSTM</topic><topic>machine learning decision support</topic><topic>RNN</topic><topic>street-scale flooding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McSpadden, Diana</creatorcontrib><creatorcontrib>Goldenberg, Steven</creatorcontrib><creatorcontrib>Roy, Binata</creatorcontrib><creatorcontrib>Schram, Malachi</creatorcontrib><creatorcontrib>Goodall, Jonathan L.</creatorcontrib><creatorcontrib>Richter, Heather</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Machine learning with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McSpadden, Diana</au><au>Goldenberg, Steven</au><au>Roy, Binata</au><au>Schram, Malachi</au><au>Goodall, Jonathan L.</au><au>Richter, Heather</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</atitle><jtitle>Machine learning with applications</jtitle><date>2023-11-29</date><risdate>2023</risdate><volume>15</volume><issn>2666-8270</issn><eissn>2666-8270</eissn><abstract>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000285201631</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-8270
ispartof Machine learning with applications, 2023-11, Vol.15
issn 2666-8270
2666-8270
language eng
recordid cdi_osti_scitechconnect_2339786
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects ENVIRONMENTAL SCIENCES
GRU
LSTM
machine learning decision support
RNN
street-scale flooding
title A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20machine%20learning%20surrogate%20models%20of%20street-scale%20flooding%20in%20Norfolk,%20Virginia&rft.jtitle=Machine%20learning%20with%20applications&rft.au=McSpadden,%20Diana&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2023-11-29&rft.volume=15&rft.issn=2666-8270&rft.eissn=2666-8270&rft_id=info:doi/&rft_dat=%3Costi%3E2339786%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true