A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of u...
Gespeichert in:
Veröffentlicht in: | Machine learning with applications 2023-11, Vol.15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Machine learning with applications |
container_volume | 15 |
creator | McSpadden, Diana Goldenberg, Steven Roy, Binata Schram, Malachi Goodall, Jonathan L. Richter, Heather |
description | Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2339786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2339786</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23397863</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgChb1HQ5nC20itY4iipOTuJaQXutpmpNcfH8RHByd_n_4RirTVVXltd4U45-fqoXIvSgKXZelMetMNTtwPDxtJOEA3MFg3Y0CgkcbA4Ue5BUj9zYhDNyilw-SFBFTLs56hM4ztx9JAc4cO_aPFVwp9hTIztWks15w8e1MLY-Hy_6UsyRqxFFCd3McArrUaGO2m7oyf6E31BJGhw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>McSpadden, Diana ; Goldenberg, Steven ; Roy, Binata ; Schram, Malachi ; Goodall, Jonathan L. ; Richter, Heather</creator><creatorcontrib>McSpadden, Diana ; Goldenberg, Steven ; Roy, Binata ; Schram, Malachi ; Goodall, Jonathan L. ; Richter, Heather ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><description>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</description><identifier>ISSN: 2666-8270</identifier><identifier>EISSN: 2666-8270</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>ENVIRONMENTAL SCIENCES ; GRU ; LSTM ; machine learning decision support ; RNN ; street-scale flooding</subject><ispartof>Machine learning with applications, 2023-11, Vol.15</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000285201631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2339786$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>McSpadden, Diana</creatorcontrib><creatorcontrib>Goldenberg, Steven</creatorcontrib><creatorcontrib>Roy, Binata</creatorcontrib><creatorcontrib>Schram, Malachi</creatorcontrib><creatorcontrib>Goodall, Jonathan L.</creatorcontrib><creatorcontrib>Richter, Heather</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><title>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</title><title>Machine learning with applications</title><description>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</description><subject>ENVIRONMENTAL SCIENCES</subject><subject>GRU</subject><subject>LSTM</subject><subject>machine learning decision support</subject><subject>RNN</subject><subject>street-scale flooding</subject><issn>2666-8270</issn><issn>2666-8270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNyrEKwjAQgOEgChb1HQ5nC20itY4iipOTuJaQXutpmpNcfH8RHByd_n_4RirTVVXltd4U45-fqoXIvSgKXZelMetMNTtwPDxtJOEA3MFg3Y0CgkcbA4Ue5BUj9zYhDNyilw-SFBFTLs56hM4ztx9JAc4cO_aPFVwp9hTIztWks15w8e1MLY-Hy_6UsyRqxFFCd3McArrUaGO2m7oyf6E31BJGhw</recordid><startdate>20231129</startdate><enddate>20231129</enddate><creator>McSpadden, Diana</creator><creator>Goldenberg, Steven</creator><creator>Roy, Binata</creator><creator>Schram, Malachi</creator><creator>Goodall, Jonathan L.</creator><creator>Richter, Heather</creator><general>Elsevier</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000285201631</orcidid></search><sort><creationdate>20231129</creationdate><title>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</title><author>McSpadden, Diana ; Goldenberg, Steven ; Roy, Binata ; Schram, Malachi ; Goodall, Jonathan L. ; Richter, Heather</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23397863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>ENVIRONMENTAL SCIENCES</topic><topic>GRU</topic><topic>LSTM</topic><topic>machine learning decision support</topic><topic>RNN</topic><topic>street-scale flooding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McSpadden, Diana</creatorcontrib><creatorcontrib>Goldenberg, Steven</creatorcontrib><creatorcontrib>Roy, Binata</creatorcontrib><creatorcontrib>Schram, Malachi</creatorcontrib><creatorcontrib>Goodall, Jonathan L.</creatorcontrib><creatorcontrib>Richter, Heather</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Machine learning with applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McSpadden, Diana</au><au>Goldenberg, Steven</au><au>Roy, Binata</au><au>Schram, Malachi</au><au>Goodall, Jonathan L.</au><au>Richter, Heather</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia</atitle><jtitle>Machine learning with applications</jtitle><date>2023-11-29</date><risdate>2023</risdate><volume>15</volume><issn>2666-8270</issn><eissn>2666-8270</eissn><abstract>Low-lying coastal cities, exemplified by Norfolk, Virginia, face the challenge of street flooding caused by rainfall and tides, which strain transportation and sewer systems and can lead to personal and property damage. While high-fidelity, physics-based simulations provide accurate predictions of urban pluvial flooding, their computational complexity renders them unsuitable for real-time applications. Using data from Norfolk rainfall events between 2016 and 2018, this study compares the performance of a previous surrogate model based on a random forest algorithm with two deep learning models: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). The comparison of deep learning to the random forest algorithm is motivated by the desire to utilize a machine learning architecture that allows for the future inclusion of common uncertainty quantification techniques and the effective integration of relevant, multi-modal features.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000285201631</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2666-8270 |
ispartof | Machine learning with applications, 2023-11, Vol.15 |
issn | 2666-8270 2666-8270 |
language | eng |
recordid | cdi_osti_scitechconnect_2339786 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | ENVIRONMENTAL SCIENCES GRU LSTM machine learning decision support RNN street-scale flooding |
title | A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20machine%20learning%20surrogate%20models%20of%20street-scale%20flooding%20in%20Norfolk,%20Virginia&rft.jtitle=Machine%20learning%20with%20applications&rft.au=McSpadden,%20Diana&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2023-11-29&rft.volume=15&rft.issn=2666-8270&rft.eissn=2666-8270&rft_id=info:doi/&rft_dat=%3Costi%3E2339786%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |