A data-driven multiscale model for reactive wetting simulations
Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A desi...
Gespeichert in:
Veröffentlicht in: | Computers & fluids 2024-03, Vol.276 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Computers & fluids |
container_volume | 276 |
creator | Ray, Jaideep Horner, Jeffrey Scott Winter, Ian S. Kemmenoe, David Jonathan Arata, Edward Robert Chandross, Michael E. Roberts, Scott Alan Grillet, Anne Mary |
description | Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models. |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2338252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338252</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23382523</originalsourceid><addsrcrecordid>eNqNiksKwjAQQLNQsH7uMLgPhKRFXYmI4gHcl5BM60iaQGfU69uFB3D1eLw3U5UxdaN3B2cWasn8NJM7W1fqeILoxes40hszDK8kxMEnhKFETNCVEUb0QaYMHxSh3APT9Hmhknmt5p1PjJsfV2p7vdzPN11YqOVAguERSs4YpLXO7W1j3V_TF0LXOHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data-driven multiscale model for reactive wetting simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Ray, Jaideep ; Horner, Jeffrey Scott ; Winter, Ian S. ; Kemmenoe, David Jonathan ; Arata, Edward Robert ; Chandross, Michael E. ; Roberts, Scott Alan ; Grillet, Anne Mary</creator><creatorcontrib>Ray, Jaideep ; Horner, Jeffrey Scott ; Winter, Ian S. ; Kemmenoe, David Jonathan ; Arata, Edward Robert ; Chandross, Michael E. ; Roberts, Scott Alan ; Grillet, Anne Mary ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.</description><identifier>ISSN: 0045-7930</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>brazing ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; continuum modeling ; Markov process ; MATHEMATICS AND COMPUTING ; molecular dynamics ; reactive wetting ; Sessile drops</subject><ispartof>Computers & fluids, 2024-03, Vol.276</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000241966771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2338252$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, Jaideep</creatorcontrib><creatorcontrib>Horner, Jeffrey Scott</creatorcontrib><creatorcontrib>Winter, Ian S.</creatorcontrib><creatorcontrib>Kemmenoe, David Jonathan</creatorcontrib><creatorcontrib>Arata, Edward Robert</creatorcontrib><creatorcontrib>Chandross, Michael E.</creatorcontrib><creatorcontrib>Roberts, Scott Alan</creatorcontrib><creatorcontrib>Grillet, Anne Mary</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>A data-driven multiscale model for reactive wetting simulations</title><title>Computers & fluids</title><description>Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.</description><subject>brazing</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>continuum modeling</subject><subject>Markov process</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>molecular dynamics</subject><subject>reactive wetting</subject><subject>Sessile drops</subject><issn>0045-7930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAQQLNQsH7uMLgPhKRFXYmI4gHcl5BM60iaQGfU69uFB3D1eLw3U5UxdaN3B2cWasn8NJM7W1fqeILoxes40hszDK8kxMEnhKFETNCVEUb0QaYMHxSh3APT9Hmhknmt5p1PjJsfV2p7vdzPN11YqOVAguERSs4YpLXO7W1j3V_TF0LXOHM</recordid><startdate>20240330</startdate><enddate>20240330</enddate><creator>Ray, Jaideep</creator><creator>Horner, Jeffrey Scott</creator><creator>Winter, Ian S.</creator><creator>Kemmenoe, David Jonathan</creator><creator>Arata, Edward Robert</creator><creator>Chandross, Michael E.</creator><creator>Roberts, Scott Alan</creator><creator>Grillet, Anne Mary</creator><general>Elsevier</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000241966771</orcidid></search><sort><creationdate>20240330</creationdate><title>A data-driven multiscale model for reactive wetting simulations</title><author>Ray, Jaideep ; Horner, Jeffrey Scott ; Winter, Ian S. ; Kemmenoe, David Jonathan ; Arata, Edward Robert ; Chandross, Michael E. ; Roberts, Scott Alan ; Grillet, Anne Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23382523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brazing</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>continuum modeling</topic><topic>Markov process</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>molecular dynamics</topic><topic>reactive wetting</topic><topic>Sessile drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Jaideep</creatorcontrib><creatorcontrib>Horner, Jeffrey Scott</creatorcontrib><creatorcontrib>Winter, Ian S.</creatorcontrib><creatorcontrib>Kemmenoe, David Jonathan</creatorcontrib><creatorcontrib>Arata, Edward Robert</creatorcontrib><creatorcontrib>Chandross, Michael E.</creatorcontrib><creatorcontrib>Roberts, Scott Alan</creatorcontrib><creatorcontrib>Grillet, Anne Mary</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Jaideep</au><au>Horner, Jeffrey Scott</au><au>Winter, Ian S.</au><au>Kemmenoe, David Jonathan</au><au>Arata, Edward Robert</au><au>Chandross, Michael E.</au><au>Roberts, Scott Alan</au><au>Grillet, Anne Mary</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven multiscale model for reactive wetting simulations</atitle><jtitle>Computers & fluids</jtitle><date>2024-03-30</date><risdate>2024</risdate><volume>276</volume><issn>0045-7930</issn><abstract>Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000241966771</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2024-03, Vol.276 |
issn | 0045-7930 |
language | eng |
recordid | cdi_osti_scitechconnect_2338252 |
source | Elsevier ScienceDirect Journals |
subjects | brazing CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS continuum modeling Markov process MATHEMATICS AND COMPUTING molecular dynamics reactive wetting Sessile drops |
title | A data-driven multiscale model for reactive wetting simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20multiscale%20model%20for%20reactive%20wetting%20simulations&rft.jtitle=Computers%20&%20fluids&rft.au=Ray,%20Jaideep&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2024-03-30&rft.volume=276&rft.issn=0045-7930&rft_id=info:doi/&rft_dat=%3Costi%3E2338252%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |