A data-driven multiscale model for reactive wetting simulations

Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A desi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & fluids 2024-03, Vol.276
Hauptverfasser: Ray, Jaideep, Horner, Jeffrey Scott, Winter, Ian S., Kemmenoe, David Jonathan, Arata, Edward Robert, Chandross, Michael E., Roberts, Scott Alan, Grillet, Anne Mary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Computers & fluids
container_volume 276
creator Ray, Jaideep
Horner, Jeffrey Scott
Winter, Ian S.
Kemmenoe, David Jonathan
Arata, Edward Robert
Chandross, Michael E.
Roberts, Scott Alan
Grillet, Anne Mary
description Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2338252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2338252</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23382523</originalsourceid><addsrcrecordid>eNqNiksKwjAQQLNQsH7uMLgPhKRFXYmI4gHcl5BM60iaQGfU69uFB3D1eLw3U5UxdaN3B2cWasn8NJM7W1fqeILoxes40hszDK8kxMEnhKFETNCVEUb0QaYMHxSh3APT9Hmhknmt5p1PjJsfV2p7vdzPN11YqOVAguERSs4YpLXO7W1j3V_TF0LXOHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data-driven multiscale model for reactive wetting simulations</title><source>Elsevier ScienceDirect Journals</source><creator>Ray, Jaideep ; Horner, Jeffrey Scott ; Winter, Ian S. ; Kemmenoe, David Jonathan ; Arata, Edward Robert ; Chandross, Michael E. ; Roberts, Scott Alan ; Grillet, Anne Mary</creator><creatorcontrib>Ray, Jaideep ; Horner, Jeffrey Scott ; Winter, Ian S. ; Kemmenoe, David Jonathan ; Arata, Edward Robert ; Chandross, Michael E. ; Roberts, Scott Alan ; Grillet, Anne Mary ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.</description><identifier>ISSN: 0045-7930</identifier><language>eng</language><publisher>United States: Elsevier</publisher><subject>brazing ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; continuum modeling ; Markov process ; MATHEMATICS AND COMPUTING ; molecular dynamics ; reactive wetting ; Sessile drops</subject><ispartof>Computers &amp; fluids, 2024-03, Vol.276</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000241966771</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2338252$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ray, Jaideep</creatorcontrib><creatorcontrib>Horner, Jeffrey Scott</creatorcontrib><creatorcontrib>Winter, Ian S.</creatorcontrib><creatorcontrib>Kemmenoe, David Jonathan</creatorcontrib><creatorcontrib>Arata, Edward Robert</creatorcontrib><creatorcontrib>Chandross, Michael E.</creatorcontrib><creatorcontrib>Roberts, Scott Alan</creatorcontrib><creatorcontrib>Grillet, Anne Mary</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>A data-driven multiscale model for reactive wetting simulations</title><title>Computers &amp; fluids</title><description>Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.</description><subject>brazing</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>continuum modeling</subject><subject>Markov process</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>molecular dynamics</subject><subject>reactive wetting</subject><subject>Sessile drops</subject><issn>0045-7930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNiksKwjAQQLNQsH7uMLgPhKRFXYmI4gHcl5BM60iaQGfU69uFB3D1eLw3U5UxdaN3B2cWasn8NJM7W1fqeILoxes40hszDK8kxMEnhKFETNCVEUb0QaYMHxSh3APT9Hmhknmt5p1PjJsfV2p7vdzPN11YqOVAguERSs4YpLXO7W1j3V_TF0LXOHM</recordid><startdate>20240330</startdate><enddate>20240330</enddate><creator>Ray, Jaideep</creator><creator>Horner, Jeffrey Scott</creator><creator>Winter, Ian S.</creator><creator>Kemmenoe, David Jonathan</creator><creator>Arata, Edward Robert</creator><creator>Chandross, Michael E.</creator><creator>Roberts, Scott Alan</creator><creator>Grillet, Anne Mary</creator><general>Elsevier</general><scope>OTOTI</scope><orcidid>https://orcid.org/0000000241966771</orcidid></search><sort><creationdate>20240330</creationdate><title>A data-driven multiscale model for reactive wetting simulations</title><author>Ray, Jaideep ; Horner, Jeffrey Scott ; Winter, Ian S. ; Kemmenoe, David Jonathan ; Arata, Edward Robert ; Chandross, Michael E. ; Roberts, Scott Alan ; Grillet, Anne Mary</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23382523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>brazing</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>continuum modeling</topic><topic>Markov process</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>molecular dynamics</topic><topic>reactive wetting</topic><topic>Sessile drops</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ray, Jaideep</creatorcontrib><creatorcontrib>Horner, Jeffrey Scott</creatorcontrib><creatorcontrib>Winter, Ian S.</creatorcontrib><creatorcontrib>Kemmenoe, David Jonathan</creatorcontrib><creatorcontrib>Arata, Edward Robert</creatorcontrib><creatorcontrib>Chandross, Michael E.</creatorcontrib><creatorcontrib>Roberts, Scott Alan</creatorcontrib><creatorcontrib>Grillet, Anne Mary</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ray, Jaideep</au><au>Horner, Jeffrey Scott</au><au>Winter, Ian S.</au><au>Kemmenoe, David Jonathan</au><au>Arata, Edward Robert</au><au>Chandross, Michael E.</au><au>Roberts, Scott Alan</au><au>Grillet, Anne Mary</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data-driven multiscale model for reactive wetting simulations</atitle><jtitle>Computers &amp; fluids</jtitle><date>2024-03-30</date><risdate>2024</risdate><volume>276</volume><issn>0045-7930</issn><abstract>Here, we describe a data-driven, multiscale technique to model reactive wetting of a silver–aluminum alloy on a Kovar™ (Fe-Ni-Co alloy) surface. We employ molecular dynamics simulations to elucidate the dependence of surface tension and wetting angle on the drop’s composition and temperature. A design of computational experiments is used to efficiently generate training data of surface tension and wetting angle from a limited number of molecular dynamics simulations. The simulation results are used to parameterize models of the material’s wetting properties and compute the uncertainty in the models due to limited data. The data-driven models are incorporated into an engineering-scale (continuum) model of a silver–aluminum sessile drop on a Kovar™ substrate. Model predictions of the wetting angle are compared with experiments of pure silver spreading on Kovar™ to quantify the model-form errors introduced by the limited training data versus the simplifications inherent in the molecular dynamics simulations. The paper presents innovations in the determination of “convergence” of noisy MD simulations before they are used to extract the wetting angle and surface tension, and the construction of their models which approximate physio-chemical processes that are left unresolved by the engineering-scale model. Together, these constitute a multiscale approach that integrates molecular-scale information into continuum scale models.</abstract><cop>United States</cop><pub>Elsevier</pub><orcidid>https://orcid.org/0000000241966771</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2024-03, Vol.276
issn 0045-7930
language eng
recordid cdi_osti_scitechconnect_2338252
source Elsevier ScienceDirect Journals
subjects brazing
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
continuum modeling
Markov process
MATHEMATICS AND COMPUTING
molecular dynamics
reactive wetting
Sessile drops
title A data-driven multiscale model for reactive wetting simulations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A56%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data-driven%20multiscale%20model%20for%20reactive%20wetting%20simulations&rft.jtitle=Computers%20&%20fluids&rft.au=Ray,%20Jaideep&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2024-03-30&rft.volume=276&rft.issn=0045-7930&rft_id=info:doi/&rft_dat=%3Costi%3E2338252%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true