Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors
Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as stron...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2024-08, Vol.18 (8), p.816-822 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 822 |
---|---|
container_issue | 8 |
container_start_page | 816 |
container_title | Nature photonics |
container_volume | 18 |
creator | Gu, Liuxin Zhang, Lifu Ni, Ruihao Xie, Ming Wild, Dominik S. Park, Suji Jang, Houk Taniguchi, Takashi Watanabe, Kenji Hafezi, Mohammad Zhou, You |
description | Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe
2
, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics.
Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe
2
results in Fermi polarons that exhibit unusually large nonlinearity. |
doi_str_mv | 10.1038/s41566-024-01434-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2337838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089002104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-36c5f672be0516a2e5396c18e3076e1643037ba5191aaa18e751cb9a24b0e4723</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXQ9ejNY5KZpRRbBdGNrkMmZmzKNKlJCu2_N3VEd67ug-8cDgehSwI3BFhzmziphaiA8goIZ7zaHaEJkbyteNOy49-9qU_RWUorgJq1lE7Q88Jpn3HYZGf0gH3wg_NWR5f3OPR4buPa4U0YdAw-YeexzmF9QIc9zstyJ1vO4N-3JoeYztFJr4dkL37mFL3N719nD9XTy-JxdvdUGdrKXDFh6l5I2lmoidDUljTCkMYykMISwRkw2ematERrXf6yJqZrNeUdWC4pm6Kr0Tek7FQyLluzLDG8NVlRxmTDmgJdj9Amhs-tTVmtwjb6kksxaFoASoAXio6UiSGlaHu1iW6t414RUIdy1ViuKuWq73LVrojYKEoF9h82_ln_o_oCUex8sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089002104</pqid></control><display><type>article</type><title>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gu, Liuxin ; Zhang, Lifu ; Ni, Ruihao ; Xie, Ming ; Wild, Dominik S. ; Park, Suji ; Jang, Houk ; Taniguchi, Takashi ; Watanabe, Kenji ; Hafezi, Mohammad ; Zhou, You</creator><creatorcontrib>Gu, Liuxin ; Zhang, Lifu ; Ni, Ruihao ; Xie, Ming ; Wild, Dominik S. ; Park, Suji ; Jang, Houk ; Taniguchi, Takashi ; Watanabe, Kenji ; Hafezi, Mohammad ; Zhou, You ; Univ. of Maryland, College Park, MD (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe
2
, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics.
Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe
2
results in Fermi polarons that exhibit unusually large nonlinearity.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-024-01434-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 2d materials ; 639/301/1019 ; 639/624/400/385 ; 639/925/357 ; Applied and Technical Physics ; Bright plating ; Continuous radiation ; Doping ; Electric field strength ; Electric fields ; Electrostatic properties ; Excitons ; Heterostructures ; Hybridization ; Interlayers ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; Nonlinear control ; Nonlinear optics ; Nonlinear response ; Nonlinear systems ; Nonlinearity ; optics ; Optoelectronics ; Oscillators ; Physics ; Physics and Astronomy ; Polarons ; Pulsed lasers ; quantum ; Quantum Physics ; Radiative lifetime ; Selenides ; Tungsten ; Tungsten compounds</subject><ispartof>Nature photonics, 2024-08, Vol.18 (8), p.816-822</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-36c5f672be0516a2e5396c18e3076e1643037ba5191aaa18e751cb9a24b0e4723</cites><orcidid>0000-0003-0670-8272 ; 0000-0002-1467-3105 ; 0000-0003-1679-4880 ; 0000-0001-9923-8809 ; 0000-0002-7836-7967 ; 0000-0002-9854-545X ; 0000-0001-7994-7077 ; 0000-0003-3533-7052 ; 0000-0003-3701-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-024-01434-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-024-01434-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2337838$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Liuxin</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Ni, Ruihao</creatorcontrib><creatorcontrib>Xie, Ming</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>Park, Suji</creatorcontrib><creatorcontrib>Jang, Houk</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Hafezi, Mohammad</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe
2
, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics.
Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe
2
results in Fermi polarons that exhibit unusually large nonlinearity.</description><subject>140/125</subject><subject>2d materials</subject><subject>639/301/1019</subject><subject>639/624/400/385</subject><subject>639/925/357</subject><subject>Applied and Technical Physics</subject><subject>Bright plating</subject><subject>Continuous radiation</subject><subject>Doping</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Electrostatic properties</subject><subject>Excitons</subject><subject>Heterostructures</subject><subject>Hybridization</subject><subject>Interlayers</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nonlinear control</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>optics</subject><subject>Optoelectronics</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarons</subject><subject>Pulsed lasers</subject><subject>quantum</subject><subject>Quantum Physics</subject><subject>Radiative lifetime</subject><subject>Selenides</subject><subject>Tungsten</subject><subject>Tungsten compounds</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXQ9ejNY5KZpRRbBdGNrkMmZmzKNKlJCu2_N3VEd67ug-8cDgehSwI3BFhzmziphaiA8goIZ7zaHaEJkbyteNOy49-9qU_RWUorgJq1lE7Q88Jpn3HYZGf0gH3wg_NWR5f3OPR4buPa4U0YdAw-YeexzmF9QIc9zstyJ1vO4N-3JoeYztFJr4dkL37mFL3N719nD9XTy-JxdvdUGdrKXDFh6l5I2lmoidDUljTCkMYykMISwRkw2ematERrXf6yJqZrNeUdWC4pm6Kr0Tek7FQyLluzLDG8NVlRxmTDmgJdj9Amhs-tTVmtwjb6kksxaFoASoAXio6UiSGlaHu1iW6t414RUIdy1ViuKuWq73LVrojYKEoF9h82_ln_o_oCUex8sA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Gu, Liuxin</creator><creator>Zhang, Lifu</creator><creator>Ni, Ruihao</creator><creator>Xie, Ming</creator><creator>Wild, Dominik S.</creator><creator>Park, Suji</creator><creator>Jang, Houk</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Hafezi, Mohammad</creator><creator>Zhou, You</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0670-8272</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0001-9923-8809</orcidid><orcidid>https://orcid.org/0000-0002-7836-7967</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid><orcidid>https://orcid.org/0000-0001-7994-7077</orcidid><orcidid>https://orcid.org/0000-0003-3533-7052</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></search><sort><creationdate>20240801</creationdate><title>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</title><author>Gu, Liuxin ; Zhang, Lifu ; Ni, Ruihao ; Xie, Ming ; Wild, Dominik S. ; Park, Suji ; Jang, Houk ; Taniguchi, Takashi ; Watanabe, Kenji ; Hafezi, Mohammad ; Zhou, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-36c5f672be0516a2e5396c18e3076e1643037ba5191aaa18e751cb9a24b0e4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/125</topic><topic>2d materials</topic><topic>639/301/1019</topic><topic>639/624/400/385</topic><topic>639/925/357</topic><topic>Applied and Technical Physics</topic><topic>Bright plating</topic><topic>Continuous radiation</topic><topic>Doping</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Electrostatic properties</topic><topic>Excitons</topic><topic>Heterostructures</topic><topic>Hybridization</topic><topic>Interlayers</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nonlinear control</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>optics</topic><topic>Optoelectronics</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarons</topic><topic>Pulsed lasers</topic><topic>quantum</topic><topic>Quantum Physics</topic><topic>Radiative lifetime</topic><topic>Selenides</topic><topic>Tungsten</topic><topic>Tungsten compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Liuxin</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Ni, Ruihao</creatorcontrib><creatorcontrib>Xie, Ming</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>Park, Suji</creatorcontrib><creatorcontrib>Jang, Houk</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Hafezi, Mohammad</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Liuxin</au><au>Zhang, Lifu</au><au>Ni, Ruihao</au><au>Xie, Ming</au><au>Wild, Dominik S.</au><au>Park, Suji</au><au>Jang, Houk</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Hafezi, Mohammad</au><au>Zhou, You</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>18</volume><issue>8</issue><spage>816</spage><epage>822</epage><pages>816-822</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe
2
, we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics.
Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe
2
results in Fermi polarons that exhibit unusually large nonlinearity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-024-01434-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0670-8272</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0001-9923-8809</orcidid><orcidid>https://orcid.org/0000-0002-7836-7967</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid><orcidid>https://orcid.org/0000-0001-7994-7077</orcidid><orcidid>https://orcid.org/0000-0003-3533-7052</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2024-08, Vol.18 (8), p.816-822 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_osti_scitechconnect_2337838 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 140/125 2d materials 639/301/1019 639/624/400/385 639/925/357 Applied and Technical Physics Bright plating Continuous radiation Doping Electric field strength Electric fields Electrostatic properties Excitons Heterostructures Hybridization Interlayers MATERIALS SCIENCE NANOSCIENCE AND NANOTECHNOLOGY Nonlinear control Nonlinear optics Nonlinear response Nonlinear systems Nonlinearity optics Optoelectronics Oscillators Physics Physics and Astronomy Polarons Pulsed lasers quantum Quantum Physics Radiative lifetime Selenides Tungsten Tungsten compounds |
title | Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20optical%20nonlinearity%20of%20Fermi%20polarons%20in%20atomically%20thin%20semiconductors&rft.jtitle=Nature%20photonics&rft.au=Gu,%20Liuxin&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2024-08-01&rft.volume=18&rft.issue=8&rft.spage=816&rft.epage=822&rft.pages=816-822&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-024-01434-x&rft_dat=%3Cproquest_osti_%3E3089002104%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089002104&rft_id=info:pmid/&rfr_iscdi=true |