Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors

Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as stron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2024-08, Vol.18 (8), p.816-822
Hauptverfasser: Gu, Liuxin, Zhang, Lifu, Ni, Ruihao, Xie, Ming, Wild, Dominik S., Park, Suji, Jang, Houk, Taniguchi, Takashi, Watanabe, Kenji, Hafezi, Mohammad, Zhou, You
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 822
container_issue 8
container_start_page 816
container_title Nature photonics
container_volume 18
creator Gu, Liuxin
Zhang, Lifu
Ni, Ruihao
Xie, Ming
Wild, Dominik S.
Park, Suji
Jang, Houk
Taniguchi, Takashi
Watanabe, Kenji
Hafezi, Mohammad
Zhou, You
description Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe 2 , we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics. Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe 2 results in Fermi polarons that exhibit unusually large nonlinearity.
doi_str_mv 10.1038/s41566-024-01434-x
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2337838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3089002104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-36c5f672be0516a2e5396c18e3076e1643037ba5191aaa18e751cb9a24b0e4723</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXQ9ejNY5KZpRRbBdGNrkMmZmzKNKlJCu2_N3VEd67ug-8cDgehSwI3BFhzmziphaiA8goIZ7zaHaEJkbyteNOy49-9qU_RWUorgJq1lE7Q88Jpn3HYZGf0gH3wg_NWR5f3OPR4buPa4U0YdAw-YeexzmF9QIc9zstyJ1vO4N-3JoeYztFJr4dkL37mFL3N719nD9XTy-JxdvdUGdrKXDFh6l5I2lmoidDUljTCkMYykMISwRkw2ematERrXf6yJqZrNeUdWC4pm6Kr0Tek7FQyLluzLDG8NVlRxmTDmgJdj9Amhs-tTVmtwjb6kksxaFoASoAXio6UiSGlaHu1iW6t414RUIdy1ViuKuWq73LVrojYKEoF9h82_ln_o_oCUex8sA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3089002104</pqid></control><display><type>article</type><title>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gu, Liuxin ; Zhang, Lifu ; Ni, Ruihao ; Xie, Ming ; Wild, Dominik S. ; Park, Suji ; Jang, Houk ; Taniguchi, Takashi ; Watanabe, Kenji ; Hafezi, Mohammad ; Zhou, You</creator><creatorcontrib>Gu, Liuxin ; Zhang, Lifu ; Ni, Ruihao ; Xie, Ming ; Wild, Dominik S. ; Park, Suji ; Jang, Houk ; Taniguchi, Takashi ; Watanabe, Kenji ; Hafezi, Mohammad ; Zhou, You ; Univ. of Maryland, College Park, MD (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe 2 , we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics. Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe 2 results in Fermi polarons that exhibit unusually large nonlinearity.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-024-01434-x</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 2d materials ; 639/301/1019 ; 639/624/400/385 ; 639/925/357 ; Applied and Technical Physics ; Bright plating ; Continuous radiation ; Doping ; Electric field strength ; Electric fields ; Electrostatic properties ; Excitons ; Heterostructures ; Hybridization ; Interlayers ; MATERIALS SCIENCE ; NANOSCIENCE AND NANOTECHNOLOGY ; Nonlinear control ; Nonlinear optics ; Nonlinear response ; Nonlinear systems ; Nonlinearity ; optics ; Optoelectronics ; Oscillators ; Physics ; Physics and Astronomy ; Polarons ; Pulsed lasers ; quantum ; Quantum Physics ; Radiative lifetime ; Selenides ; Tungsten ; Tungsten compounds</subject><ispartof>Nature photonics, 2024-08, Vol.18 (8), p.816-822</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-36c5f672be0516a2e5396c18e3076e1643037ba5191aaa18e751cb9a24b0e4723</cites><orcidid>0000-0003-0670-8272 ; 0000-0002-1467-3105 ; 0000-0003-1679-4880 ; 0000-0001-9923-8809 ; 0000-0002-7836-7967 ; 0000-0002-9854-545X ; 0000-0001-7994-7077 ; 0000-0003-3533-7052 ; 0000-0003-3701-8119</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-024-01434-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-024-01434-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2337838$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gu, Liuxin</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Ni, Ruihao</creatorcontrib><creatorcontrib>Xie, Ming</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>Park, Suji</creatorcontrib><creatorcontrib>Jang, Houk</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Hafezi, Mohammad</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe 2 , we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics. Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe 2 results in Fermi polarons that exhibit unusually large nonlinearity.</description><subject>140/125</subject><subject>2d materials</subject><subject>639/301/1019</subject><subject>639/624/400/385</subject><subject>639/925/357</subject><subject>Applied and Technical Physics</subject><subject>Bright plating</subject><subject>Continuous radiation</subject><subject>Doping</subject><subject>Electric field strength</subject><subject>Electric fields</subject><subject>Electrostatic properties</subject><subject>Excitons</subject><subject>Heterostructures</subject><subject>Hybridization</subject><subject>Interlayers</subject><subject>MATERIALS SCIENCE</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nonlinear control</subject><subject>Nonlinear optics</subject><subject>Nonlinear response</subject><subject>Nonlinear systems</subject><subject>Nonlinearity</subject><subject>optics</subject><subject>Optoelectronics</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polarons</subject><subject>Pulsed lasers</subject><subject>quantum</subject><subject>Quantum Physics</subject><subject>Radiative lifetime</subject><subject>Selenides</subject><subject>Tungsten</subject><subject>Tungsten compounds</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wFXQ9ejNY5KZpRRbBdGNrkMmZmzKNKlJCu2_N3VEd67ug-8cDgehSwI3BFhzmziphaiA8goIZ7zaHaEJkbyteNOy49-9qU_RWUorgJq1lE7Q88Jpn3HYZGf0gH3wg_NWR5f3OPR4buPa4U0YdAw-YeexzmF9QIc9zstyJ1vO4N-3JoeYztFJr4dkL37mFL3N719nD9XTy-JxdvdUGdrKXDFh6l5I2lmoidDUljTCkMYykMISwRkw2ematERrXf6yJqZrNeUdWC4pm6Kr0Tek7FQyLluzLDG8NVlRxmTDmgJdj9Amhs-tTVmtwjb6kksxaFoASoAXio6UiSGlaHu1iW6t414RUIdy1ViuKuWq73LVrojYKEoF9h82_ln_o_oCUex8sA</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Gu, Liuxin</creator><creator>Zhang, Lifu</creator><creator>Ni, Ruihao</creator><creator>Xie, Ming</creator><creator>Wild, Dominik S.</creator><creator>Park, Suji</creator><creator>Jang, Houk</creator><creator>Taniguchi, Takashi</creator><creator>Watanabe, Kenji</creator><creator>Hafezi, Mohammad</creator><creator>Zhou, You</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-0670-8272</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0001-9923-8809</orcidid><orcidid>https://orcid.org/0000-0002-7836-7967</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid><orcidid>https://orcid.org/0000-0001-7994-7077</orcidid><orcidid>https://orcid.org/0000-0003-3533-7052</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></search><sort><creationdate>20240801</creationdate><title>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</title><author>Gu, Liuxin ; Zhang, Lifu ; Ni, Ruihao ; Xie, Ming ; Wild, Dominik S. ; Park, Suji ; Jang, Houk ; Taniguchi, Takashi ; Watanabe, Kenji ; Hafezi, Mohammad ; Zhou, You</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-36c5f672be0516a2e5396c18e3076e1643037ba5191aaa18e751cb9a24b0e4723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>140/125</topic><topic>2d materials</topic><topic>639/301/1019</topic><topic>639/624/400/385</topic><topic>639/925/357</topic><topic>Applied and Technical Physics</topic><topic>Bright plating</topic><topic>Continuous radiation</topic><topic>Doping</topic><topic>Electric field strength</topic><topic>Electric fields</topic><topic>Electrostatic properties</topic><topic>Excitons</topic><topic>Heterostructures</topic><topic>Hybridization</topic><topic>Interlayers</topic><topic>MATERIALS SCIENCE</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nonlinear control</topic><topic>Nonlinear optics</topic><topic>Nonlinear response</topic><topic>Nonlinear systems</topic><topic>Nonlinearity</topic><topic>optics</topic><topic>Optoelectronics</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polarons</topic><topic>Pulsed lasers</topic><topic>quantum</topic><topic>Quantum Physics</topic><topic>Radiative lifetime</topic><topic>Selenides</topic><topic>Tungsten</topic><topic>Tungsten compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gu, Liuxin</creatorcontrib><creatorcontrib>Zhang, Lifu</creatorcontrib><creatorcontrib>Ni, Ruihao</creatorcontrib><creatorcontrib>Xie, Ming</creatorcontrib><creatorcontrib>Wild, Dominik S.</creatorcontrib><creatorcontrib>Park, Suji</creatorcontrib><creatorcontrib>Jang, Houk</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Hafezi, Mohammad</creatorcontrib><creatorcontrib>Zhou, You</creatorcontrib><creatorcontrib>Univ. of Maryland, College Park, MD (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gu, Liuxin</au><au>Zhang, Lifu</au><au>Ni, Ruihao</au><au>Xie, Ming</au><au>Wild, Dominik S.</au><au>Park, Suji</au><au>Jang, Houk</au><au>Taniguchi, Takashi</au><au>Watanabe, Kenji</au><au>Hafezi, Mohammad</au><au>Zhou, You</au><aucorp>Univ. of Maryland, College Park, MD (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2024-08-01</date><risdate>2024</risdate><volume>18</volume><issue>8</issue><spage>816</spage><epage>822</epage><pages>816-822</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Realizing strong nonlinear optical responses is a long-standing goal of both fundamental and technological importance. Recently, substantial efforts have been focused on exploring excitons in solids to achieve nonlinearities even down to few-photon levels. However, a crucial tradeoff arises as strong light–matter interactions require large oscillator strength and short radiative lifetime of excitons, which limits their nonlinearity. Here we experimentally demonstrate strong nonlinear optical responses with large oscillator strength by exploiting the coupling between excitons and carriers in an atomically thin semiconductor. By controlling the electric field and electrostatic doping of trilayer WSe 2 , we observe the hybridization between intralayer and interlayer excitons and the formation of Fermi polarons. Substantial optical nonlinearity is observed under continuous-wave and pulsed laser excitation, where the Fermi polaron resonance blueshifts by as much as ~10 meV. Intriguingly, we observe a remarkable asymmetry in the optical nonlinearity between electron and hole doping, which is tunable by the applied electric field. We attribute these features to the optically induced valley polarization due to the interactions between excitons and free charges. Our results establish atomically thin heterostructures as a highly versatile platform for engineering nonlinear optical response with applications to classical and quantum optoelectronics. Exploiting the interactions between bright excitons and free carriers in an atomically thin semiconductor of trilayer tungsten diselenide WSe 2 results in Fermi polarons that exhibit unusually large nonlinearity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-024-01434-x</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0670-8272</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><orcidid>https://orcid.org/0000-0003-1679-4880</orcidid><orcidid>https://orcid.org/0000-0001-9923-8809</orcidid><orcidid>https://orcid.org/0000-0002-7836-7967</orcidid><orcidid>https://orcid.org/0000-0002-9854-545X</orcidid><orcidid>https://orcid.org/0000-0001-7994-7077</orcidid><orcidid>https://orcid.org/0000-0003-3533-7052</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2024-08, Vol.18 (8), p.816-822
issn 1749-4885
1749-4893
language eng
recordid cdi_osti_scitechconnect_2337838
source Nature; SpringerLink Journals - AutoHoldings
subjects 140/125
2d materials
639/301/1019
639/624/400/385
639/925/357
Applied and Technical Physics
Bright plating
Continuous radiation
Doping
Electric field strength
Electric fields
Electrostatic properties
Excitons
Heterostructures
Hybridization
Interlayers
MATERIALS SCIENCE
NANOSCIENCE AND NANOTECHNOLOGY
Nonlinear control
Nonlinear optics
Nonlinear response
Nonlinear systems
Nonlinearity
optics
Optoelectronics
Oscillators
Physics
Physics and Astronomy
Polarons
Pulsed lasers
quantum
Quantum Physics
Radiative lifetime
Selenides
Tungsten
Tungsten compounds
title Giant optical nonlinearity of Fermi polarons in atomically thin semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T17%3A34%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Giant%20optical%20nonlinearity%20of%20Fermi%20polarons%20in%20atomically%20thin%20semiconductors&rft.jtitle=Nature%20photonics&rft.au=Gu,%20Liuxin&rft.aucorp=Univ.%20of%20Maryland,%20College%20Park,%20MD%20(United%20States)&rft.date=2024-08-01&rft.volume=18&rft.issue=8&rft.spage=816&rft.epage=822&rft.pages=816-822&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-024-01434-x&rft_dat=%3Cproquest_osti_%3E3089002104%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3089002104&rft_id=info:pmid/&rfr_iscdi=true