Optimal transport for mesh adaptivity and shock capturing of compressible flows

We present an optimal transport approach for mesh adaptivity and shock capturing of compressible flows. Shock capturing is based on a viscosity regularization of the governing equations by introducing an artificial viscosity field as solution of the modified Helmholtz equation. Mesh adaptation is ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2024-07, Vol.508 (C), p.113005, Article 113005
Hauptverfasser: Nguyen, Ngoc Cuong, Van Heyningen, R. Loek, Vila-Pérez, Jordi, Peraire, Jaime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue C
container_start_page 113005
container_title Journal of computational physics
container_volume 508
creator Nguyen, Ngoc Cuong
Van Heyningen, R. Loek
Vila-Pérez, Jordi
Peraire, Jaime
description We present an optimal transport approach for mesh adaptivity and shock capturing of compressible flows. Shock capturing is based on a viscosity regularization of the governing equations by introducing an artificial viscosity field as solution of the modified Helmholtz equation. Mesh adaptation is based on the optimal transport theory by formulating a mesh mapping as solution of Monge-Ampère equation. The marriage of optimal transport and viscosity regularization for compressible flows leads to a coupled system of the compressible Euler/Navier-Stokes equations, the Helmholtz equation, and the Monge-Ampère equation. We propose an iterative procedure to solve the coupled system in a sequential fashion using homotopy continuation to minimize the amount of artificial viscosity while enforcing positivity-preserving and smoothness constraints on the numerical solution. We explore various mesh monitor functions for computing r-adaptive meshes in order to reduce the amount of artificial dissipation and improve the accuracy of the numerical solution. The hybridizable discontinuous Galerkin method is used for the spatial discretization of the governing equations to obtain high-order accurate solutions. Extensive numerical results are presented to demonstrate the optimal transport approach on transonic, supersonic, hypersonic flows in two dimensions. The approach is found to yield accurate, sharp yet smooth solutions within a few mesh adaptation iterations. •An optimal transport approach is developed for shock capturing and mesh adaptation.•Minimize artificial viscosity subject to physicality and smoothness constraints.•Adapt meshes to capture shocks and resolve boundary layers.•Extensive results are presented for transonic, supersonic and hypersonic flows.
doi_str_mv 10.1016/j.jcp.2024.113005
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2337734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999124002547</els_id><sourcerecordid>S0021999124002547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c276t-323a6662710d8f19f21f7fdd955231a0d43d2860d1c390e00340f4c37fe52f793</originalsourceid><addsrcrecordid>eNp9kEtLBDEQhIMouK7-AG_B-4ydZF7Bkyy-YGEveg4xDzfj7GRI4or_3gzj2VNDd1VR_SF0TaAkQJrbvuzVVFKgVUkIA6hP0IoAh4K2pDlFKwBKCs45OUcXMfYA0NVVt0K73ZTcQQ44BTnGyYeErQ_4YOIeSy3z8ejSD5ajxnHv1SdWefcV3PiBvcXKH6ZgYnTvg8F28N_xEp1ZOURz9TfX6O3x4XXzXGx3Ty-b-22haNukglEmm6bJ5UB3lnBLiW2t1ryuKSMSdMU07RrQRDEOBoBVYCvFWmtqalvO1uhmyfUxORGVS0btlR9Ho5KgjLUtq7KILCIVfIzBWDGF_Gz4EQTEjE30ImMTMzaxYMueu8VjcvujM2EON6My2oU5W3v3j_sXVg501g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal transport for mesh adaptivity and shock capturing of compressible flows</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Nguyen, Ngoc Cuong ; Van Heyningen, R. Loek ; Vila-Pérez, Jordi ; Peraire, Jaime</creator><creatorcontrib>Nguyen, Ngoc Cuong ; Van Heyningen, R. Loek ; Vila-Pérez, Jordi ; Peraire, Jaime</creatorcontrib><description>We present an optimal transport approach for mesh adaptivity and shock capturing of compressible flows. Shock capturing is based on a viscosity regularization of the governing equations by introducing an artificial viscosity field as solution of the modified Helmholtz equation. Mesh adaptation is based on the optimal transport theory by formulating a mesh mapping as solution of Monge-Ampère equation. The marriage of optimal transport and viscosity regularization for compressible flows leads to a coupled system of the compressible Euler/Navier-Stokes equations, the Helmholtz equation, and the Monge-Ampère equation. We propose an iterative procedure to solve the coupled system in a sequential fashion using homotopy continuation to minimize the amount of artificial viscosity while enforcing positivity-preserving and smoothness constraints on the numerical solution. We explore various mesh monitor functions for computing r-adaptive meshes in order to reduce the amount of artificial dissipation and improve the accuracy of the numerical solution. The hybridizable discontinuous Galerkin method is used for the spatial discretization of the governing equations to obtain high-order accurate solutions. Extensive numerical results are presented to demonstrate the optimal transport approach on transonic, supersonic, hypersonic flows in two dimensions. The approach is found to yield accurate, sharp yet smooth solutions within a few mesh adaptation iterations. •An optimal transport approach is developed for shock capturing and mesh adaptation.•Minimize artificial viscosity subject to physicality and smoothness constraints.•Adapt meshes to capture shocks and resolve boundary layers.•Extensive results are presented for transonic, supersonic and hypersonic flows.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2024.113005</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Artificial viscosity ; Compressible flows ; Discontinuous Galerkin methods ; Mesh adaptation ; Optimal transport ; Shock capturing</subject><ispartof>Journal of computational physics, 2024-07, Vol.508 (C), p.113005, Article 113005</ispartof><rights>2024 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c276t-323a6662710d8f19f21f7fdd955231a0d43d2860d1c390e00340f4c37fe52f793</cites><orcidid>0000-0001-9167-5780 ; 0000-0003-3164-0863 ; 0000000191675780 ; 0000000331640863</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2024.113005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2337734$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Ngoc Cuong</creatorcontrib><creatorcontrib>Van Heyningen, R. Loek</creatorcontrib><creatorcontrib>Vila-Pérez, Jordi</creatorcontrib><creatorcontrib>Peraire, Jaime</creatorcontrib><title>Optimal transport for mesh adaptivity and shock capturing of compressible flows</title><title>Journal of computational physics</title><description>We present an optimal transport approach for mesh adaptivity and shock capturing of compressible flows. Shock capturing is based on a viscosity regularization of the governing equations by introducing an artificial viscosity field as solution of the modified Helmholtz equation. Mesh adaptation is based on the optimal transport theory by formulating a mesh mapping as solution of Monge-Ampère equation. The marriage of optimal transport and viscosity regularization for compressible flows leads to a coupled system of the compressible Euler/Navier-Stokes equations, the Helmholtz equation, and the Monge-Ampère equation. We propose an iterative procedure to solve the coupled system in a sequential fashion using homotopy continuation to minimize the amount of artificial viscosity while enforcing positivity-preserving and smoothness constraints on the numerical solution. We explore various mesh monitor functions for computing r-adaptive meshes in order to reduce the amount of artificial dissipation and improve the accuracy of the numerical solution. The hybridizable discontinuous Galerkin method is used for the spatial discretization of the governing equations to obtain high-order accurate solutions. Extensive numerical results are presented to demonstrate the optimal transport approach on transonic, supersonic, hypersonic flows in two dimensions. The approach is found to yield accurate, sharp yet smooth solutions within a few mesh adaptation iterations. •An optimal transport approach is developed for shock capturing and mesh adaptation.•Minimize artificial viscosity subject to physicality and smoothness constraints.•Adapt meshes to capture shocks and resolve boundary layers.•Extensive results are presented for transonic, supersonic and hypersonic flows.</description><subject>Artificial viscosity</subject><subject>Compressible flows</subject><subject>Discontinuous Galerkin methods</subject><subject>Mesh adaptation</subject><subject>Optimal transport</subject><subject>Shock capturing</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLBDEQhIMouK7-AG_B-4ydZF7Bkyy-YGEveg4xDzfj7GRI4or_3gzj2VNDd1VR_SF0TaAkQJrbvuzVVFKgVUkIA6hP0IoAh4K2pDlFKwBKCs45OUcXMfYA0NVVt0K73ZTcQQ44BTnGyYeErQ_4YOIeSy3z8ejSD5ajxnHv1SdWefcV3PiBvcXKH6ZgYnTvg8F28N_xEp1ZOURz9TfX6O3x4XXzXGx3Ty-b-22haNukglEmm6bJ5UB3lnBLiW2t1ryuKSMSdMU07RrQRDEOBoBVYCvFWmtqalvO1uhmyfUxORGVS0btlR9Ho5KgjLUtq7KILCIVfIzBWDGF_Gz4EQTEjE30ImMTMzaxYMueu8VjcvujM2EON6My2oU5W3v3j_sXVg501g</recordid><startdate>20240701</startdate><enddate>20240701</enddate><creator>Nguyen, Ngoc Cuong</creator><creator>Van Heyningen, R. Loek</creator><creator>Vila-Pérez, Jordi</creator><creator>Peraire, Jaime</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9167-5780</orcidid><orcidid>https://orcid.org/0000-0003-3164-0863</orcidid><orcidid>https://orcid.org/0000000191675780</orcidid><orcidid>https://orcid.org/0000000331640863</orcidid></search><sort><creationdate>20240701</creationdate><title>Optimal transport for mesh adaptivity and shock capturing of compressible flows</title><author>Nguyen, Ngoc Cuong ; Van Heyningen, R. Loek ; Vila-Pérez, Jordi ; Peraire, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c276t-323a6662710d8f19f21f7fdd955231a0d43d2860d1c390e00340f4c37fe52f793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial viscosity</topic><topic>Compressible flows</topic><topic>Discontinuous Galerkin methods</topic><topic>Mesh adaptation</topic><topic>Optimal transport</topic><topic>Shock capturing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Ngoc Cuong</creatorcontrib><creatorcontrib>Van Heyningen, R. Loek</creatorcontrib><creatorcontrib>Vila-Pérez, Jordi</creatorcontrib><creatorcontrib>Peraire, Jaime</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Ngoc Cuong</au><au>Van Heyningen, R. Loek</au><au>Vila-Pérez, Jordi</au><au>Peraire, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal transport for mesh adaptivity and shock capturing of compressible flows</atitle><jtitle>Journal of computational physics</jtitle><date>2024-07-01</date><risdate>2024</risdate><volume>508</volume><issue>C</issue><spage>113005</spage><pages>113005-</pages><artnum>113005</artnum><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>We present an optimal transport approach for mesh adaptivity and shock capturing of compressible flows. Shock capturing is based on a viscosity regularization of the governing equations by introducing an artificial viscosity field as solution of the modified Helmholtz equation. Mesh adaptation is based on the optimal transport theory by formulating a mesh mapping as solution of Monge-Ampère equation. The marriage of optimal transport and viscosity regularization for compressible flows leads to a coupled system of the compressible Euler/Navier-Stokes equations, the Helmholtz equation, and the Monge-Ampère equation. We propose an iterative procedure to solve the coupled system in a sequential fashion using homotopy continuation to minimize the amount of artificial viscosity while enforcing positivity-preserving and smoothness constraints on the numerical solution. We explore various mesh monitor functions for computing r-adaptive meshes in order to reduce the amount of artificial dissipation and improve the accuracy of the numerical solution. The hybridizable discontinuous Galerkin method is used for the spatial discretization of the governing equations to obtain high-order accurate solutions. Extensive numerical results are presented to demonstrate the optimal transport approach on transonic, supersonic, hypersonic flows in two dimensions. The approach is found to yield accurate, sharp yet smooth solutions within a few mesh adaptation iterations. •An optimal transport approach is developed for shock capturing and mesh adaptation.•Minimize artificial viscosity subject to physicality and smoothness constraints.•Adapt meshes to capture shocks and resolve boundary layers.•Extensive results are presented for transonic, supersonic and hypersonic flows.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2024.113005</doi><orcidid>https://orcid.org/0000-0001-9167-5780</orcidid><orcidid>https://orcid.org/0000-0003-3164-0863</orcidid><orcidid>https://orcid.org/0000000191675780</orcidid><orcidid>https://orcid.org/0000000331640863</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2024-07, Vol.508 (C), p.113005, Article 113005
issn 0021-9991
1090-2716
language eng
recordid cdi_osti_scitechconnect_2337734
source Elsevier ScienceDirect Journals Complete
subjects Artificial viscosity
Compressible flows
Discontinuous Galerkin methods
Mesh adaptation
Optimal transport
Shock capturing
title Optimal transport for mesh adaptivity and shock capturing of compressible flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20transport%20for%20mesh%20adaptivity%20and%20shock%20capturing%20of%20compressible%20flows&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Nguyen,%20Ngoc%20Cuong&rft.date=2024-07-01&rft.volume=508&rft.issue=C&rft.spage=113005&rft.pages=113005-&rft.artnum=113005&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2024.113005&rft_dat=%3Celsevier_osti_%3ES0021999124002547%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0021999124002547&rfr_iscdi=true