Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder
We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has in...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2024-06, Vol.426, p.116978, Article 116978 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116978 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 426 |
creator | Kim, Youngkyu Choi, Youngsoo Yoo, Byounghyun |
description | We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given. |
doi_str_mv | 10.1016/j.cma.2024.116978 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2335946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782524002342</els_id><sourcerecordid>S0045782524002342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a59abbe20dcefa90e41c8450436cee3a90bc3032698a2d3d43793a3d0497ad363</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKs_wF1wf2te9xFdlVKrUOhG1yFN5tqUNilJKvTfm8t17WwGhnMOZz6EHimZUUKb5_3MHPWMESZmlDay7a7QhHatrBjl3TWaECLqqu1YfYvuUtqTMh1lE7RZ6dPpgufLFzzHPviD86AjLscYtNnhPkQ8SqzOGkcwwacczya74PE5Of-N9TmHCrwJFuI9uun1IcHD356ir7fl5-K9Wm9WH4v5ujKcylzpWurtFhixBnotCQhqOlETwRsDwMtlazjhrJGdZpZbwVvJNbdEyFZb3vApehpzQ8pOJeMymF3p5sFkxTivpRhEdBSZGFKK0KtTdEcdL4oSNWBTe1WwqQGbGrEVz-vogdL-x0EcwstzYF0csm1w_7h_AckpdNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Youngkyu ; Choi, Youngsoo ; Yoo, Byounghyun</creator><creatorcontrib>Kim, Youngkyu ; Choi, Youngsoo ; Yoo, Byounghyun ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2024.116978</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Auto-encoder ; Data reconstruction ; Digital twin ; Hyper-reduction ; MATHEMATICS AND COMPUTING ; Nonlinear manifold solution representation ; Sparse measurements</subject><ispartof>Computer methods in applied mechanics and engineering, 2024-06, Vol.426, p.116978, Article 116978</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-a59abbe20dcefa90e41c8450436cee3a90bc3032698a2d3d43793a3d0497ad363</cites><orcidid>0000-0002-4825-4072 ; 0000-0001-8797-7970 ; 0000-0001-9299-349X ; 000000019299349X ; 0000000187977970 ; 0000000248254072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2024.116978$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2335946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngkyu</creatorcontrib><creatorcontrib>Choi, Youngsoo</creatorcontrib><creatorcontrib>Yoo, Byounghyun</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</title><title>Computer methods in applied mechanics and engineering</title><description>We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.</description><subject>Auto-encoder</subject><subject>Data reconstruction</subject><subject>Digital twin</subject><subject>Hyper-reduction</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear manifold solution representation</subject><subject>Sparse measurements</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKs_wF1wf2te9xFdlVKrUOhG1yFN5tqUNilJKvTfm8t17WwGhnMOZz6EHimZUUKb5_3MHPWMESZmlDay7a7QhHatrBjl3TWaECLqqu1YfYvuUtqTMh1lE7RZ6dPpgufLFzzHPviD86AjLscYtNnhPkQ8SqzOGkcwwacczya74PE5Of-N9TmHCrwJFuI9uun1IcHD356ir7fl5-K9Wm9WH4v5ujKcylzpWurtFhixBnotCQhqOlETwRsDwMtlazjhrJGdZpZbwVvJNbdEyFZb3vApehpzQ8pOJeMymF3p5sFkxTivpRhEdBSZGFKK0KtTdEcdL4oSNWBTe1WwqQGbGrEVz-vogdL-x0EcwstzYF0csm1w_7h_AckpdNk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kim, Youngkyu</creator><creator>Choi, Youngsoo</creator><creator>Yoo, Byounghyun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4825-4072</orcidid><orcidid>https://orcid.org/0000-0001-8797-7970</orcidid><orcidid>https://orcid.org/0000-0001-9299-349X</orcidid><orcidid>https://orcid.org/000000019299349X</orcidid><orcidid>https://orcid.org/0000000187977970</orcidid><orcidid>https://orcid.org/0000000248254072</orcidid></search><sort><creationdate>20240601</creationdate><title>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</title><author>Kim, Youngkyu ; Choi, Youngsoo ; Yoo, Byounghyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a59abbe20dcefa90e41c8450436cee3a90bc3032698a2d3d43793a3d0497ad363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Auto-encoder</topic><topic>Data reconstruction</topic><topic>Digital twin</topic><topic>Hyper-reduction</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear manifold solution representation</topic><topic>Sparse measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngkyu</creatorcontrib><creatorcontrib>Choi, Youngsoo</creatorcontrib><creatorcontrib>Yoo, Byounghyun</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngkyu</au><au>Choi, Youngsoo</au><au>Yoo, Byounghyun</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>426</volume><spage>116978</spage><pages>116978-</pages><artnum>116978</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2024.116978</doi><orcidid>https://orcid.org/0000-0002-4825-4072</orcidid><orcidid>https://orcid.org/0000-0001-8797-7970</orcidid><orcidid>https://orcid.org/0000-0001-9299-349X</orcidid><orcidid>https://orcid.org/000000019299349X</orcidid><orcidid>https://orcid.org/0000000187977970</orcidid><orcidid>https://orcid.org/0000000248254072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2024-06, Vol.426, p.116978, Article 116978 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_osti_scitechconnect_2335946 |
source | Elsevier ScienceDirect Journals |
subjects | Auto-encoder Data reconstruction Digital twin Hyper-reduction MATHEMATICS AND COMPUTING Nonlinear manifold solution representation Sparse measurements |
title | Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gappy%20AE:%20A%20nonlinear%20approach%20for%20Gappy%20data%20reconstruction%20using%20auto-encoder&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Kim,%20Youngkyu&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2024-06-01&rft.volume=426&rft.spage=116978&rft.pages=116978-&rft.artnum=116978&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2024.116978&rft_dat=%3Celsevier_osti_%3ES0045782524002342%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0045782524002342&rfr_iscdi=true |