Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder

We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2024-06, Vol.426, p.116978, Article 116978
Hauptverfasser: Kim, Youngkyu, Choi, Youngsoo, Yoo, Byounghyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 116978
container_title Computer methods in applied mechanics and engineering
container_volume 426
creator Kim, Youngkyu
Choi, Youngsoo
Yoo, Byounghyun
description We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.
doi_str_mv 10.1016/j.cma.2024.116978
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2335946</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782524002342</els_id><sourcerecordid>S0045782524002342</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a59abbe20dcefa90e41c8450436cee3a90bc3032698a2d3d43793a3d0497ad363</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWKs_wF1wf2te9xFdlVKrUOhG1yFN5tqUNilJKvTfm8t17WwGhnMOZz6EHimZUUKb5_3MHPWMESZmlDay7a7QhHatrBjl3TWaECLqqu1YfYvuUtqTMh1lE7RZ6dPpgufLFzzHPviD86AjLscYtNnhPkQ8SqzOGkcwwacczya74PE5Of-N9TmHCrwJFuI9uun1IcHD356ir7fl5-K9Wm9WH4v5ujKcylzpWurtFhixBnotCQhqOlETwRsDwMtlazjhrJGdZpZbwVvJNbdEyFZb3vApehpzQ8pOJeMymF3p5sFkxTivpRhEdBSZGFKK0KtTdEcdL4oSNWBTe1WwqQGbGrEVz-vogdL-x0EcwstzYF0csm1w_7h_AckpdNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Youngkyu ; Choi, Youngsoo ; Yoo, Byounghyun</creator><creatorcontrib>Kim, Youngkyu ; Choi, Youngsoo ; Yoo, Byounghyun ; Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><description>We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2024.116978</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Auto-encoder ; Data reconstruction ; Digital twin ; Hyper-reduction ; MATHEMATICS AND COMPUTING ; Nonlinear manifold solution representation ; Sparse measurements</subject><ispartof>Computer methods in applied mechanics and engineering, 2024-06, Vol.426, p.116978, Article 116978</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c319t-a59abbe20dcefa90e41c8450436cee3a90bc3032698a2d3d43793a3d0497ad363</cites><orcidid>0000-0002-4825-4072 ; 0000-0001-8797-7970 ; 0000-0001-9299-349X ; 000000019299349X ; 0000000187977970 ; 0000000248254072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2024.116978$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2335946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Youngkyu</creatorcontrib><creatorcontrib>Choi, Youngsoo</creatorcontrib><creatorcontrib>Yoo, Byounghyun</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><title>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</title><title>Computer methods in applied mechanics and engineering</title><description>We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.</description><subject>Auto-encoder</subject><subject>Data reconstruction</subject><subject>Digital twin</subject><subject>Hyper-reduction</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear manifold solution representation</subject><subject>Sparse measurements</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWKs_wF1wf2te9xFdlVKrUOhG1yFN5tqUNilJKvTfm8t17WwGhnMOZz6EHimZUUKb5_3MHPWMESZmlDay7a7QhHatrBjl3TWaECLqqu1YfYvuUtqTMh1lE7RZ6dPpgufLFzzHPviD86AjLscYtNnhPkQ8SqzOGkcwwacczya74PE5Of-N9TmHCrwJFuI9uun1IcHD356ir7fl5-K9Wm9WH4v5ujKcylzpWurtFhixBnotCQhqOlETwRsDwMtlazjhrJGdZpZbwVvJNbdEyFZb3vApehpzQ8pOJeMymF3p5sFkxTivpRhEdBSZGFKK0KtTdEcdL4oSNWBTe1WwqQGbGrEVz-vogdL-x0EcwstzYF0csm1w_7h_AckpdNk</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Kim, Youngkyu</creator><creator>Choi, Youngsoo</creator><creator>Yoo, Byounghyun</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4825-4072</orcidid><orcidid>https://orcid.org/0000-0001-8797-7970</orcidid><orcidid>https://orcid.org/0000-0001-9299-349X</orcidid><orcidid>https://orcid.org/000000019299349X</orcidid><orcidid>https://orcid.org/0000000187977970</orcidid><orcidid>https://orcid.org/0000000248254072</orcidid></search><sort><creationdate>20240601</creationdate><title>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</title><author>Kim, Youngkyu ; Choi, Youngsoo ; Yoo, Byounghyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a59abbe20dcefa90e41c8450436cee3a90bc3032698a2d3d43793a3d0497ad363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Auto-encoder</topic><topic>Data reconstruction</topic><topic>Digital twin</topic><topic>Hyper-reduction</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear manifold solution representation</topic><topic>Sparse measurements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Youngkyu</creatorcontrib><creatorcontrib>Choi, Youngsoo</creatorcontrib><creatorcontrib>Yoo, Byounghyun</creatorcontrib><creatorcontrib>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Youngkyu</au><au>Choi, Youngsoo</au><au>Yoo, Byounghyun</au><aucorp>Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>426</volume><spage>116978</spage><pages>116978-</pages><artnum>116978</artnum><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We introduce a novel data reconstruction algorithm known as Gappy auto-encoder (Gappy AE) to address the limitations associated with Gappy proper orthogonal decomposition (Gappy POD), a widely used method for data reconstruction when dealing with sparse measurements or missing data. Gappy POD has inherent constraints in accurately representing solutions characterized by slowly decaying Kolmogorov N-widths, primarily due to its reliance on linear subspaces for data prediction. In contrast, Gappy AE leverages the power of nonlinear manifold representations to address data reconstruction challenges of conventional Gappy POD. It excels at real-time state prediction in scenarios where only sparsely measured data is available, filling in the gaps effectively. This capability makes Gappy AE particularly valuable, such as for digital twin and image correction applications. To demonstrate the superior data reconstruction performance of Gappy AE with sparse measurements, we provide several numerical examples, including scenarios like 2D diffusion, 2D radial advection, and 2D wave equation problems. Additionally, we assess the impact of four distinct sampling algorithms – discrete empirical interpolation method, the S-OPT algorithm, Latin hypercube sampling, and uniformly distributed sampling – on data reconstruction accuracy. Our findings conclusively show that Gappy AE outperforms Gappy POD in data reconstruction when sparse measurements are given.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2024.116978</doi><orcidid>https://orcid.org/0000-0002-4825-4072</orcidid><orcidid>https://orcid.org/0000-0001-8797-7970</orcidid><orcidid>https://orcid.org/0000-0001-9299-349X</orcidid><orcidid>https://orcid.org/000000019299349X</orcidid><orcidid>https://orcid.org/0000000187977970</orcidid><orcidid>https://orcid.org/0000000248254072</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2024-06, Vol.426, p.116978, Article 116978
issn 0045-7825
1879-2138
language eng
recordid cdi_osti_scitechconnect_2335946
source Elsevier ScienceDirect Journals
subjects Auto-encoder
Data reconstruction
Digital twin
Hyper-reduction
MATHEMATICS AND COMPUTING
Nonlinear manifold solution representation
Sparse measurements
title Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A10%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gappy%20AE:%20A%20nonlinear%20approach%20for%20Gappy%20data%20reconstruction%20using%20auto-encoder&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Kim,%20Youngkyu&rft.aucorp=Lawrence%20Livermore%20National%20Laboratory%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2024-06-01&rft.volume=426&rft.spage=116978&rft.pages=116978-&rft.artnum=116978&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2024.116978&rft_dat=%3Celsevier_osti_%3ES0045782524002342%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0045782524002342&rfr_iscdi=true