Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling
Metal halide perovskite thin films are promising materials for next-generation photovoltaic applications, but the thermomechanical instabilities of these materials are critical barriers to device longevity. In this study, we measure the evolution of stresses in methylammonium lead iodide (MAPbI3) fi...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2024-05, Vol.9 (5), p.2101-2108 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2108 |
---|---|
container_issue | 5 |
container_start_page | 2101 |
container_title | ACS energy letters |
container_volume | 9 |
creator | Samoylov, Anton A. Dailey, Matthew Li, Yanan Lohr, Patrick J. Raglow, Sean Printz, Adam D. |
description | Metal halide perovskite thin films are promising materials for next-generation photovoltaic applications, but the thermomechanical instabilities of these materials are critical barriers to device longevity. In this study, we measure the evolution of stresses in methylammonium lead iodide (MAPbI3) films thermally cycled from 25 to 105 °C using a multibeam optical stress sensor (MOSS) system. We demonstrate that these films undergo residual stress buildup due to inelastic deformation as well as a simple mitigation strategy by incorporating low concentrations of 5-aminovaleric acid hydrochloride (5-AVACl) as an additive. Adding 5-AVACl increases the tensile stresses measured at room temperature but beneficially decreases the biaxial modulus from 9.60 ± 0.44 GPa to 7.95 ± 0.55 GPa, resulting in greater accommodation of thermal stresses. The hysteresis loop is ∼63% smaller with the inclusion of 5-AVACl, and the stress relaxation at 50 °C decreases from 86.46 to 51.49 MPa. The larger stress relaxation in pristine MAPbI3 is correlated with grain boundary opening after five cycles, while the inclusion of 5-AVACl mitigates this degradation. Our findings underscore the importance of studying the dynamic response of perovskite films during thermal cycling and lay the foundation for further exploration into the mechanisms governing the thermomechanical behavior of perovskite thin films. |
doi_str_mv | 10.1021/acsenergylett.4c00587 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2335925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d25480946</sourcerecordid><originalsourceid>FETCH-LOGICAL-a270t-45446fddd76a328822e709de7cc64d10ab8e6f70b4eb49a4e67b93fa9b79679a3</originalsourceid><addsrcrecordid>eNqFUMtOwzAQjBBIVKWfgGRxT3EcJ06OVXlVagWHcrYce9O6JDbYbqX8PUbpAU5oD7uj3RntTJLcZnieYZLdC-nBgNsNHYQwpxLjomIXyYTkFU6rrC4uf83Xycz7A8Y4K6si1iT5WhnohA9aogdoretF0NYgbdAGwn7oRN9bo489WoNQaGWVVoDewNmT_9ABkDAKbXTQu5HXDGihVMQn8EgdnTY7tN1DlO3QcpBdxDfJVSs6D7NznybvT4_b5Uu6fn1eLRfrVBCGQ0oLSstWKcVKkZOqIgQYrhUwKUuqMiyaCsqW4YZCQ2tBoWRNnbeiblhdslrk0-Ru1LXRHfcyfiv30hoDMnCS50VNinhUjEfSWe8dtPzT6V64gWeY_-TL_-TLz_lGXjby4pof7NGZaOUfzjcjPIWo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling</title><source>American Chemical Society Journals</source><creator>Samoylov, Anton A. ; Dailey, Matthew ; Li, Yanan ; Lohr, Patrick J. ; Raglow, Sean ; Printz, Adam D.</creator><creatorcontrib>Samoylov, Anton A. ; Dailey, Matthew ; Li, Yanan ; Lohr, Patrick J. ; Raglow, Sean ; Printz, Adam D. ; Univ. of Arizona, Tucson, AZ (United States)</creatorcontrib><description>Metal halide perovskite thin films are promising materials for next-generation photovoltaic applications, but the thermomechanical instabilities of these materials are critical barriers to device longevity. In this study, we measure the evolution of stresses in methylammonium lead iodide (MAPbI3) films thermally cycled from 25 to 105 °C using a multibeam optical stress sensor (MOSS) system. We demonstrate that these films undergo residual stress buildup due to inelastic deformation as well as a simple mitigation strategy by incorporating low concentrations of 5-aminovaleric acid hydrochloride (5-AVACl) as an additive. Adding 5-AVACl increases the tensile stresses measured at room temperature but beneficially decreases the biaxial modulus from 9.60 ± 0.44 GPa to 7.95 ± 0.55 GPa, resulting in greater accommodation of thermal stresses. The hysteresis loop is ∼63% smaller with the inclusion of 5-AVACl, and the stress relaxation at 50 °C decreases from 86.46 to 51.49 MPa. The larger stress relaxation in pristine MAPbI3 is correlated with grain boundary opening after five cycles, while the inclusion of 5-AVACl mitigates this degradation. Our findings underscore the importance of studying the dynamic response of perovskite films during thermal cycling and lay the foundation for further exploration into the mechanisms governing the thermomechanical behavior of perovskite thin films.</description><identifier>ISSN: 2380-8195</identifier><identifier>EISSN: 2380-8195</identifier><identifier>DOI: 10.1021/acsenergylett.4c00587</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>deformation ; hysteresis ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; metal halide perovskites ; perovskites ; stress ; thermal cycling ; thermomechanical reliability ; thin film stresses ; thin films</subject><ispartof>ACS energy letters, 2024-05, Vol.9 (5), p.2101-2108</ispartof><rights>2024 American Chemical Society</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a270t-45446fddd76a328822e709de7cc64d10ab8e6f70b4eb49a4e67b93fa9b79679a3</cites><orcidid>0000-0002-5264-7792 ; 0000-0002-1846-4888 ; 0000000252647792 ; 0000000218464888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsenergylett.4c00587$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsenergylett.4c00587$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2335925$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Samoylov, Anton A.</creatorcontrib><creatorcontrib>Dailey, Matthew</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Lohr, Patrick J.</creatorcontrib><creatorcontrib>Raglow, Sean</creatorcontrib><creatorcontrib>Printz, Adam D.</creatorcontrib><creatorcontrib>Univ. of Arizona, Tucson, AZ (United States)</creatorcontrib><title>Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling</title><title>ACS energy letters</title><addtitle>ACS Energy Lett</addtitle><description>Metal halide perovskite thin films are promising materials for next-generation photovoltaic applications, but the thermomechanical instabilities of these materials are critical barriers to device longevity. In this study, we measure the evolution of stresses in methylammonium lead iodide (MAPbI3) films thermally cycled from 25 to 105 °C using a multibeam optical stress sensor (MOSS) system. We demonstrate that these films undergo residual stress buildup due to inelastic deformation as well as a simple mitigation strategy by incorporating low concentrations of 5-aminovaleric acid hydrochloride (5-AVACl) as an additive. Adding 5-AVACl increases the tensile stresses measured at room temperature but beneficially decreases the biaxial modulus from 9.60 ± 0.44 GPa to 7.95 ± 0.55 GPa, resulting in greater accommodation of thermal stresses. The hysteresis loop is ∼63% smaller with the inclusion of 5-AVACl, and the stress relaxation at 50 °C decreases from 86.46 to 51.49 MPa. The larger stress relaxation in pristine MAPbI3 is correlated with grain boundary opening after five cycles, while the inclusion of 5-AVACl mitigates this degradation. Our findings underscore the importance of studying the dynamic response of perovskite films during thermal cycling and lay the foundation for further exploration into the mechanisms governing the thermomechanical behavior of perovskite thin films.</description><subject>deformation</subject><subject>hysteresis</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>metal halide perovskites</subject><subject>perovskites</subject><subject>stress</subject><subject>thermal cycling</subject><subject>thermomechanical reliability</subject><subject>thin film stresses</subject><subject>thin films</subject><issn>2380-8195</issn><issn>2380-8195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFUMtOwzAQjBBIVKWfgGRxT3EcJ06OVXlVagWHcrYce9O6JDbYbqX8PUbpAU5oD7uj3RntTJLcZnieYZLdC-nBgNsNHYQwpxLjomIXyYTkFU6rrC4uf83Xycz7A8Y4K6si1iT5WhnohA9aogdoretF0NYgbdAGwn7oRN9bo489WoNQaGWVVoDewNmT_9ABkDAKbXTQu5HXDGihVMQn8EgdnTY7tN1DlO3QcpBdxDfJVSs6D7NznybvT4_b5Uu6fn1eLRfrVBCGQ0oLSstWKcVKkZOqIgQYrhUwKUuqMiyaCsqW4YZCQ2tBoWRNnbeiblhdslrk0-Ru1LXRHfcyfiv30hoDMnCS50VNinhUjEfSWe8dtPzT6V64gWeY_-TL_-TLz_lGXjby4pof7NGZaOUfzjcjPIWo</recordid><startdate>20240510</startdate><enddate>20240510</enddate><creator>Samoylov, Anton A.</creator><creator>Dailey, Matthew</creator><creator>Li, Yanan</creator><creator>Lohr, Patrick J.</creator><creator>Raglow, Sean</creator><creator>Printz, Adam D.</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5264-7792</orcidid><orcidid>https://orcid.org/0000-0002-1846-4888</orcidid><orcidid>https://orcid.org/0000000252647792</orcidid><orcidid>https://orcid.org/0000000218464888</orcidid></search><sort><creationdate>20240510</creationdate><title>Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling</title><author>Samoylov, Anton A. ; Dailey, Matthew ; Li, Yanan ; Lohr, Patrick J. ; Raglow, Sean ; Printz, Adam D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a270t-45446fddd76a328822e709de7cc64d10ab8e6f70b4eb49a4e67b93fa9b79679a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deformation</topic><topic>hysteresis</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>metal halide perovskites</topic><topic>perovskites</topic><topic>stress</topic><topic>thermal cycling</topic><topic>thermomechanical reliability</topic><topic>thin film stresses</topic><topic>thin films</topic><toplevel>online_resources</toplevel><creatorcontrib>Samoylov, Anton A.</creatorcontrib><creatorcontrib>Dailey, Matthew</creatorcontrib><creatorcontrib>Li, Yanan</creatorcontrib><creatorcontrib>Lohr, Patrick J.</creatorcontrib><creatorcontrib>Raglow, Sean</creatorcontrib><creatorcontrib>Printz, Adam D.</creatorcontrib><creatorcontrib>Univ. of Arizona, Tucson, AZ (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>ACS energy letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samoylov, Anton A.</au><au>Dailey, Matthew</au><au>Li, Yanan</au><au>Lohr, Patrick J.</au><au>Raglow, Sean</au><au>Printz, Adam D.</au><aucorp>Univ. of Arizona, Tucson, AZ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling</atitle><jtitle>ACS energy letters</jtitle><addtitle>ACS Energy Lett</addtitle><date>2024-05-10</date><risdate>2024</risdate><volume>9</volume><issue>5</issue><spage>2101</spage><epage>2108</epage><pages>2101-2108</pages><issn>2380-8195</issn><eissn>2380-8195</eissn><abstract>Metal halide perovskite thin films are promising materials for next-generation photovoltaic applications, but the thermomechanical instabilities of these materials are critical barriers to device longevity. In this study, we measure the evolution of stresses in methylammonium lead iodide (MAPbI3) films thermally cycled from 25 to 105 °C using a multibeam optical stress sensor (MOSS) system. We demonstrate that these films undergo residual stress buildup due to inelastic deformation as well as a simple mitigation strategy by incorporating low concentrations of 5-aminovaleric acid hydrochloride (5-AVACl) as an additive. Adding 5-AVACl increases the tensile stresses measured at room temperature but beneficially decreases the biaxial modulus from 9.60 ± 0.44 GPa to 7.95 ± 0.55 GPa, resulting in greater accommodation of thermal stresses. The hysteresis loop is ∼63% smaller with the inclusion of 5-AVACl, and the stress relaxation at 50 °C decreases from 86.46 to 51.49 MPa. The larger stress relaxation in pristine MAPbI3 is correlated with grain boundary opening after five cycles, while the inclusion of 5-AVACl mitigates this degradation. Our findings underscore the importance of studying the dynamic response of perovskite films during thermal cycling and lay the foundation for further exploration into the mechanisms governing the thermomechanical behavior of perovskite thin films.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acsenergylett.4c00587</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5264-7792</orcidid><orcidid>https://orcid.org/0000-0002-1846-4888</orcidid><orcidid>https://orcid.org/0000000252647792</orcidid><orcidid>https://orcid.org/0000000218464888</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2380-8195 |
ispartof | ACS energy letters, 2024-05, Vol.9 (5), p.2101-2108 |
issn | 2380-8195 2380-8195 |
language | eng |
recordid | cdi_osti_scitechconnect_2335925 |
source | American Chemical Society Journals |
subjects | deformation hysteresis INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY metal halide perovskites perovskites stress thermal cycling thermomechanical reliability thin film stresses thin films |
title | Inelastic Deformation in Methylammonium Lead Iodide Perovskite and Mitigation by Additives during Thermal Cycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A47%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inelastic%20Deformation%20in%20Methylammonium%20Lead%20Iodide%20Perovskite%20and%20Mitigation%20by%20Additives%20during%20Thermal%20Cycling&rft.jtitle=ACS%20energy%20letters&rft.au=Samoylov,%20Anton%20A.&rft.aucorp=Univ.%20of%20Arizona,%20Tucson,%20AZ%20(United%20States)&rft.date=2024-05-10&rft.volume=9&rft.issue=5&rft.spage=2101&rft.epage=2108&rft.pages=2101-2108&rft.issn=2380-8195&rft.eissn=2380-8195&rft_id=info:doi/10.1021/acsenergylett.4c00587&rft_dat=%3Cacs_osti_%3Ed25480946%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |