MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations

This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads that are se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on smart grid 2023-08, Vol.15 (2)
Hauptverfasser: Hu, Yi, Li, Yiyan, Song, Lidong, Lee, Han Pyo, Rehm, P. J., Makdad, Matthew, Miller, Edmond, Lu, Ning
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title IEEE transactions on smart grid
container_volume 15
creator Hu, Yi
Li, Yiyan
Song, Lidong
Lee, Han Pyo
Rehm, P. J.
Makdad, Matthew
Miller, Edmond
Lu, Ning
description This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads that are served by the same distribution transformer. This enables the generation of a large amount of correlated SLPs required for microgrid and distribution system studies. Here, the novelty and uniqueness of the MultiLoad-GAN framework are three-fold. First, to the best of our knowledge, this is the first method for generating a group of load profiles bearing realistic spatial- temporal correlations simultaneously. Second, two complementary realisticness metrics for evaluating generated load profiles are developed: computing statistics based on domain knowledge and comparing high-level features via a deep-learning classifier. Third, to tackle data scarcity, a novel iterative data augmentation mechanism is developed to generate training samples for enhancing the training of both the classifier and the MultiLoad-GAN model. Simulation results show that MultiLoad- GAN can generate more realistic load profiles than existing approaches, especially in group level characteristics. With little finetuning, MultiLoad-GAN can be readily extended to generate a group of load or PV profiles for a feeder or a service area.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2329284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2329284</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23292843</originalsourceid><addsrcrecordid>eNqNirEOgjAUADtoIlH-4cW9CVI04oZEcRAX2ElTnlKtLWnL4N-Lxg_wlhvuJiRYpUlKWbRmMxI6d49GGGObOA3IoxyUl2fDW1pklx1kMIruucMWqpf2HXop4NOhsGbooUCNlntpNJToO9NCbrSTLVqpb1D1Y-KK1vjsjeVqjNai-v5uQaZXrhyGP8_J8nio8xM1zsvGCelRdMJojcI3MYvTeJuwv6Y3yAJH0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations</title><source>IEEE Electronic Library (IEL)</source><creator>Hu, Yi ; Li, Yiyan ; Song, Lidong ; Lee, Han Pyo ; Rehm, P. J. ; Makdad, Matthew ; Miller, Edmond ; Lu, Ning</creator><creatorcontrib>Hu, Yi ; Li, Yiyan ; Song, Lidong ; Lee, Han Pyo ; Rehm, P. J. ; Makdad, Matthew ; Miller, Edmond ; Lu, Ning ; North Carolina State University, Raleigh, NC (United States)</creatorcontrib><description>This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads that are served by the same distribution transformer. This enables the generation of a large amount of correlated SLPs required for microgrid and distribution system studies. Here, the novelty and uniqueness of the MultiLoad-GAN framework are three-fold. First, to the best of our knowledge, this is the first method for generating a group of load profiles bearing realistic spatial- temporal correlations simultaneously. Second, two complementary realisticness metrics for evaluating generated load profiles are developed: computing statistics based on domain knowledge and comparing high-level features via a deep-learning classifier. Third, to tackle data scarcity, a novel iterative data augmentation mechanism is developed to generate training samples for enhancing the training of both the classifier and the MultiLoad-GAN model. Simulation results show that MultiLoad- GAN can generate more realistic load profiles than existing approaches, especially in group level characteristics. With little finetuning, MultiLoad-GAN can be readily extended to generate a group of load or PV profiles for a feeder or a service area.</description><identifier>ISSN: 1949-3053</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Data augmentation ; generative adversarial networks ; load profile group generation ; machine learning ; negative sample generation ; POWER TRANSMISSION AND DISTRIBUTION ; synthetic data</subject><ispartof>IEEE transactions on smart grid, 2023-08, Vol.15 (2)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000301250653 ; 0000000287967139 ; 0000000337428740 ; 0000000273014409 ; 0000000261360371</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2329284$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Li, Yiyan</creatorcontrib><creatorcontrib>Song, Lidong</creatorcontrib><creatorcontrib>Lee, Han Pyo</creatorcontrib><creatorcontrib>Rehm, P. J.</creatorcontrib><creatorcontrib>Makdad, Matthew</creatorcontrib><creatorcontrib>Miller, Edmond</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><title>MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations</title><title>IEEE transactions on smart grid</title><description>This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads that are served by the same distribution transformer. This enables the generation of a large amount of correlated SLPs required for microgrid and distribution system studies. Here, the novelty and uniqueness of the MultiLoad-GAN framework are three-fold. First, to the best of our knowledge, this is the first method for generating a group of load profiles bearing realistic spatial- temporal correlations simultaneously. Second, two complementary realisticness metrics for evaluating generated load profiles are developed: computing statistics based on domain knowledge and comparing high-level features via a deep-learning classifier. Third, to tackle data scarcity, a novel iterative data augmentation mechanism is developed to generate training samples for enhancing the training of both the classifier and the MultiLoad-GAN model. Simulation results show that MultiLoad- GAN can generate more realistic load profiles than existing approaches, especially in group level characteristics. With little finetuning, MultiLoad-GAN can be readily extended to generate a group of load or PV profiles for a feeder or a service area.</description><subject>Data augmentation</subject><subject>generative adversarial networks</subject><subject>load profile group generation</subject><subject>machine learning</subject><subject>negative sample generation</subject><subject>POWER TRANSMISSION AND DISTRIBUTION</subject><subject>synthetic data</subject><issn>1949-3053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNirEOgjAUADtoIlH-4cW9CVI04oZEcRAX2ElTnlKtLWnL4N-Lxg_wlhvuJiRYpUlKWbRmMxI6d49GGGObOA3IoxyUl2fDW1pklx1kMIruucMWqpf2HXop4NOhsGbooUCNlntpNJToO9NCbrSTLVqpb1D1Y-KK1vjsjeVqjNai-v5uQaZXrhyGP8_J8nio8xM1zsvGCelRdMJojcI3MYvTeJuwv6Y3yAJH0A</recordid><startdate>20230804</startdate><enddate>20230804</enddate><creator>Hu, Yi</creator><creator>Li, Yiyan</creator><creator>Song, Lidong</creator><creator>Lee, Han Pyo</creator><creator>Rehm, P. J.</creator><creator>Makdad, Matthew</creator><creator>Miller, Edmond</creator><creator>Lu, Ning</creator><general>IEEE</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000301250653</orcidid><orcidid>https://orcid.org/0000000287967139</orcidid><orcidid>https://orcid.org/0000000337428740</orcidid><orcidid>https://orcid.org/0000000273014409</orcidid><orcidid>https://orcid.org/0000000261360371</orcidid></search><sort><creationdate>20230804</creationdate><title>MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations</title><author>Hu, Yi ; Li, Yiyan ; Song, Lidong ; Lee, Han Pyo ; Rehm, P. J. ; Makdad, Matthew ; Miller, Edmond ; Lu, Ning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23292843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data augmentation</topic><topic>generative adversarial networks</topic><topic>load profile group generation</topic><topic>machine learning</topic><topic>negative sample generation</topic><topic>POWER TRANSMISSION AND DISTRIBUTION</topic><topic>synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Yi</creatorcontrib><creatorcontrib>Li, Yiyan</creatorcontrib><creatorcontrib>Song, Lidong</creatorcontrib><creatorcontrib>Lee, Han Pyo</creatorcontrib><creatorcontrib>Rehm, P. J.</creatorcontrib><creatorcontrib>Makdad, Matthew</creatorcontrib><creatorcontrib>Miller, Edmond</creatorcontrib><creatorcontrib>Lu, Ning</creatorcontrib><creatorcontrib>North Carolina State University, Raleigh, NC (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on smart grid</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Yi</au><au>Li, Yiyan</au><au>Song, Lidong</au><au>Lee, Han Pyo</au><au>Rehm, P. J.</au><au>Makdad, Matthew</au><au>Miller, Edmond</au><au>Lu, Ning</au><aucorp>North Carolina State University, Raleigh, NC (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations</atitle><jtitle>IEEE transactions on smart grid</jtitle><date>2023-08-04</date><risdate>2023</risdate><volume>15</volume><issue>2</issue><issn>1949-3053</issn><abstract>This paper presents a deep-learning framework, Multi-load Generative Adversarial Network (MultiLoad-GAN), for generating a group of synthetic load profiles (SLPs) simultaneously. The main contribution of MultiLoad-GAN is the capture of spatial-temporal correlations among a group of loads that are served by the same distribution transformer. This enables the generation of a large amount of correlated SLPs required for microgrid and distribution system studies. Here, the novelty and uniqueness of the MultiLoad-GAN framework are three-fold. First, to the best of our knowledge, this is the first method for generating a group of load profiles bearing realistic spatial- temporal correlations simultaneously. Second, two complementary realisticness metrics for evaluating generated load profiles are developed: computing statistics based on domain knowledge and comparing high-level features via a deep-learning classifier. Third, to tackle data scarcity, a novel iterative data augmentation mechanism is developed to generate training samples for enhancing the training of both the classifier and the MultiLoad-GAN model. Simulation results show that MultiLoad- GAN can generate more realistic load profiles than existing approaches, especially in group level characteristics. With little finetuning, MultiLoad-GAN can be readily extended to generate a group of load or PV profiles for a feeder or a service area.</abstract><cop>United States</cop><pub>IEEE</pub><orcidid>https://orcid.org/0000000301250653</orcidid><orcidid>https://orcid.org/0000000287967139</orcidid><orcidid>https://orcid.org/0000000337428740</orcidid><orcidid>https://orcid.org/0000000273014409</orcidid><orcidid>https://orcid.org/0000000261360371</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-3053
ispartof IEEE transactions on smart grid, 2023-08, Vol.15 (2)
issn 1949-3053
language eng
recordid cdi_osti_scitechconnect_2329284
source IEEE Electronic Library (IEL)
subjects Data augmentation
generative adversarial networks
load profile group generation
machine learning
negative sample generation
POWER TRANSMISSION AND DISTRIBUTION
synthetic data
title MultiLoad-GAN: A GAN-Based Synthetic Load Group Generation Method Considering Spatial-Temporal Correlations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A04%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MultiLoad-GAN:%20A%20GAN-Based%20Synthetic%20Load%20Group%20Generation%20Method%20Considering%20Spatial-Temporal%20Correlations&rft.jtitle=IEEE%20transactions%20on%20smart%20grid&rft.au=Hu,%20Yi&rft.aucorp=North%20Carolina%20State%20University,%20Raleigh,%20NC%20(United%20States)&rft.date=2023-08-04&rft.volume=15&rft.issue=2&rft.issn=1949-3053&rft_id=info:doi/&rft_dat=%3Costi%3E2329284%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true