Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks

Electrically conductive metal–organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized far...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-04, Vol.136 (18), p.n/a
Hauptverfasser: Su, Alice Y., Apostol, Petru, Wang, Jiande, Vlad, Alexandru, Dincă, Mircea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 18
container_start_page
container_title Angewandte Chemie
container_volume 136
creator Su, Alice Y.
Apostol, Petru
Wang, Jiande
Vlad, Alexandru
Dincă, Mircea
description Electrically conductive metal–organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized faradaic processes in addition to double‐layer capacitance. Although conductive MOFs are usually comprised of redox active ligands which allow faradaic reactions upon electrochemical polarization, systematic studies providing deeper understanding of the charge storage processes and structure‐function relationships have been scarce. Here, we investigate the charge storage mechanisms of a series of triazatruxene‐based 2D layered conductive MOFs with variable alkyl functional groups, Ni3(HIR3‐TAT)2 (TAT=triazatruxene; R=H, Et, n‐Bu, n‐Pent). Functionalization of the triazatruxene core allows for systematic variation of structural parameters while maintaining in‐plane conjugation between ligands and metals. Specifically, R groups modulate interlayer spacing, which in turn shifts the charge storage mechanism from double‐layer capacitance towards pseudocapacitance, leading to an increase in molar specific capacitance from Ni3(HIH3‐TAT)2 to Ni3(HIBu3‐TAT)2. Partial exfoliation of Ni3(HIBu3‐TAT)2 renders redox active ligand moieties more accessible, and thus increases the dominance of faradaic processes. Our strategy of controlling charge storage mechanism through tuning the accessibility of redox‐active sites may motivate further design and engineering of electrode materials for EC. Faradaic contributions to charge storage increase as interlayer spacing widens in a series of Ni3(HIR3‐TAT)2 (R=H, Et, n‐Bu, n‐Pent) 2D conductive MOFs, as the charge storage mechanism shifts to adopt increasingly pseudocapacitive character. An optimum in terms of capacitance is reached, balancing faradaic contributions and resistances.
doi_str_mv 10.1002/ange.202402526
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2328628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3039820495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1446-dcc454ec30a456fd4b83e9f16281376d0e8d2577b538296f500adc2b22fa33183</originalsourceid><addsrcrecordid>eNqFkM1uEzEUhS1EJULLlrUF60mvr-35WVZRWioVuiCsLcdzJ3GZ2MGeEGXXR6jUN-yTdKIgWLI6m-870jmMfRQwFQB4acOKpgioADWWb9hEaBSFrHT1lk0AlCpqVM079j7nBwAosWombDfvyQ0pujVtvLM9n9mtdX6wwRFfJOso870f1vw2DJR6e6DEvx-JsOI-8MU-vjw-tX5DIfsYjn4M7c4N_jfxrzTY_uXx-T6tbPCOXye7oX1MP_MFO-tsn-nDnzxnP67ni9mX4u7-5nZ2dVc4oVRZtM4prchJsEqXXauWtaSmEyXWQlZlC1S3qKtqqWWNTdlpANs6XCJ2VkpRy3P26dQb8-BNHneRW7sYwrjZoMR6bBqhzydom-KvHeXBPMRdGrdkI0E2NYJq9EhNT5RLMedEndkmv7HpYASY4__m-L_5-_8oNCdh73s6_Ic2V99u5v_cV23WjEI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3039820495</pqid></control><display><type>article</type><title>Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks</title><source>Access via Wiley Online Library</source><creator>Su, Alice Y. ; Apostol, Petru ; Wang, Jiande ; Vlad, Alexandru ; Dincă, Mircea</creator><creatorcontrib>Su, Alice Y. ; Apostol, Petru ; Wang, Jiande ; Vlad, Alexandru ; Dincă, Mircea</creatorcontrib><description>Electrically conductive metal–organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized faradaic processes in addition to double‐layer capacitance. Although conductive MOFs are usually comprised of redox active ligands which allow faradaic reactions upon electrochemical polarization, systematic studies providing deeper understanding of the charge storage processes and structure‐function relationships have been scarce. Here, we investigate the charge storage mechanisms of a series of triazatruxene‐based 2D layered conductive MOFs with variable alkyl functional groups, Ni3(HIR3‐TAT)2 (TAT=triazatruxene; R=H, Et, n‐Bu, n‐Pent). Functionalization of the triazatruxene core allows for systematic variation of structural parameters while maintaining in‐plane conjugation between ligands and metals. Specifically, R groups modulate interlayer spacing, which in turn shifts the charge storage mechanism from double‐layer capacitance towards pseudocapacitance, leading to an increase in molar specific capacitance from Ni3(HIH3‐TAT)2 to Ni3(HIBu3‐TAT)2. Partial exfoliation of Ni3(HIBu3‐TAT)2 renders redox active ligand moieties more accessible, and thus increases the dominance of faradaic processes. Our strategy of controlling charge storage mechanism through tuning the accessibility of redox‐active sites may motivate further design and engineering of electrode materials for EC. Faradaic contributions to charge storage increase as interlayer spacing widens in a series of Ni3(HIR3‐TAT)2 (R=H, Et, n‐Bu, n‐Pent) 2D conductive MOFs, as the charge storage mechanism shifts to adopt increasingly pseudocapacitive character. An optimum in terms of capacitance is reached, balancing faradaic contributions and resistances.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202402526</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Accessibility ; Capacitance ; Chemical reactions ; Conjugation ; coordination polymers ; electrochemical capacitors ; Electrochemistry ; Electrode materials ; Electrode polarization ; Energy storage ; Functional groups ; Interlayers ; Ligands ; Metal-organic frameworks ; Metals ; pseudocapacitance ; Structure-function relationships</subject><ispartof>Angewandte Chemie, 2024-04, Vol.136 (18), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1446-dcc454ec30a456fd4b83e9f16281376d0e8d2577b538296f500adc2b22fa33183</cites><orcidid>0000-0003-2429-0746 ; 0000-0002-1262-1264 ; 0000-0002-0059-9119 ; 0000-0003-4969-9812 ; 0009-0005-3123-6029 ; 0000000200599119 ; 0000000349699812 ; 0000000324290746 ; 0009000531236029 ; 0000000212621264</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202402526$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202402526$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2328628$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Su, Alice Y.</creatorcontrib><creatorcontrib>Apostol, Petru</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><creatorcontrib>Dincă, Mircea</creatorcontrib><title>Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks</title><title>Angewandte Chemie</title><description>Electrically conductive metal–organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized faradaic processes in addition to double‐layer capacitance. Although conductive MOFs are usually comprised of redox active ligands which allow faradaic reactions upon electrochemical polarization, systematic studies providing deeper understanding of the charge storage processes and structure‐function relationships have been scarce. Here, we investigate the charge storage mechanisms of a series of triazatruxene‐based 2D layered conductive MOFs with variable alkyl functional groups, Ni3(HIR3‐TAT)2 (TAT=triazatruxene; R=H, Et, n‐Bu, n‐Pent). Functionalization of the triazatruxene core allows for systematic variation of structural parameters while maintaining in‐plane conjugation between ligands and metals. Specifically, R groups modulate interlayer spacing, which in turn shifts the charge storage mechanism from double‐layer capacitance towards pseudocapacitance, leading to an increase in molar specific capacitance from Ni3(HIH3‐TAT)2 to Ni3(HIBu3‐TAT)2. Partial exfoliation of Ni3(HIBu3‐TAT)2 renders redox active ligand moieties more accessible, and thus increases the dominance of faradaic processes. Our strategy of controlling charge storage mechanism through tuning the accessibility of redox‐active sites may motivate further design and engineering of electrode materials for EC. Faradaic contributions to charge storage increase as interlayer spacing widens in a series of Ni3(HIR3‐TAT)2 (R=H, Et, n‐Bu, n‐Pent) 2D conductive MOFs, as the charge storage mechanism shifts to adopt increasingly pseudocapacitive character. An optimum in terms of capacitance is reached, balancing faradaic contributions and resistances.</description><subject>Accessibility</subject><subject>Capacitance</subject><subject>Chemical reactions</subject><subject>Conjugation</subject><subject>coordination polymers</subject><subject>electrochemical capacitors</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electrode polarization</subject><subject>Energy storage</subject><subject>Functional groups</subject><subject>Interlayers</subject><subject>Ligands</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>pseudocapacitance</subject><subject>Structure-function relationships</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1uEzEUhS1EJULLlrUF60mvr-35WVZRWioVuiCsLcdzJ3GZ2MGeEGXXR6jUN-yTdKIgWLI6m-870jmMfRQwFQB4acOKpgioADWWb9hEaBSFrHT1lk0AlCpqVM079j7nBwAosWombDfvyQ0pujVtvLM9n9mtdX6wwRFfJOso870f1vw2DJR6e6DEvx-JsOI-8MU-vjw-tX5DIfsYjn4M7c4N_jfxrzTY_uXx-T6tbPCOXye7oX1MP_MFO-tsn-nDnzxnP67ni9mX4u7-5nZ2dVc4oVRZtM4prchJsEqXXauWtaSmEyXWQlZlC1S3qKtqqWWNTdlpANs6XCJ2VkpRy3P26dQb8-BNHneRW7sYwrjZoMR6bBqhzydom-KvHeXBPMRdGrdkI0E2NYJq9EhNT5RLMedEndkmv7HpYASY4__m-L_5-_8oNCdh73s6_Ic2V99u5v_cV23WjEI</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Su, Alice Y.</creator><creator>Apostol, Petru</creator><creator>Wang, Jiande</creator><creator>Vlad, Alexandru</creator><creator>Dincă, Mircea</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2429-0746</orcidid><orcidid>https://orcid.org/0000-0002-1262-1264</orcidid><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid><orcidid>https://orcid.org/0000-0003-4969-9812</orcidid><orcidid>https://orcid.org/0009-0005-3123-6029</orcidid><orcidid>https://orcid.org/0000000200599119</orcidid><orcidid>https://orcid.org/0000000349699812</orcidid><orcidid>https://orcid.org/0000000324290746</orcidid><orcidid>https://orcid.org/0009000531236029</orcidid><orcidid>https://orcid.org/0000000212621264</orcidid></search><sort><creationdate>20240424</creationdate><title>Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks</title><author>Su, Alice Y. ; Apostol, Petru ; Wang, Jiande ; Vlad, Alexandru ; Dincă, Mircea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1446-dcc454ec30a456fd4b83e9f16281376d0e8d2577b538296f500adc2b22fa33183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accessibility</topic><topic>Capacitance</topic><topic>Chemical reactions</topic><topic>Conjugation</topic><topic>coordination polymers</topic><topic>electrochemical capacitors</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electrode polarization</topic><topic>Energy storage</topic><topic>Functional groups</topic><topic>Interlayers</topic><topic>Ligands</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>pseudocapacitance</topic><topic>Structure-function relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Alice Y.</creatorcontrib><creatorcontrib>Apostol, Petru</creatorcontrib><creatorcontrib>Wang, Jiande</creatorcontrib><creatorcontrib>Vlad, Alexandru</creatorcontrib><creatorcontrib>Dincă, Mircea</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Alice Y.</au><au>Apostol, Petru</au><au>Wang, Jiande</au><au>Vlad, Alexandru</au><au>Dincă, Mircea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-04-24</date><risdate>2024</risdate><volume>136</volume><issue>18</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Electrically conductive metal–organic frameworks (MOFs) are promising candidates for electrochemical capacitors (EC) for fast energy storage due to their high specific surface areas and potential for redox activity. To maximize energy density, traditional inorganic pseudocapacitors have utilized faradaic processes in addition to double‐layer capacitance. Although conductive MOFs are usually comprised of redox active ligands which allow faradaic reactions upon electrochemical polarization, systematic studies providing deeper understanding of the charge storage processes and structure‐function relationships have been scarce. Here, we investigate the charge storage mechanisms of a series of triazatruxene‐based 2D layered conductive MOFs with variable alkyl functional groups, Ni3(HIR3‐TAT)2 (TAT=triazatruxene; R=H, Et, n‐Bu, n‐Pent). Functionalization of the triazatruxene core allows for systematic variation of structural parameters while maintaining in‐plane conjugation between ligands and metals. Specifically, R groups modulate interlayer spacing, which in turn shifts the charge storage mechanism from double‐layer capacitance towards pseudocapacitance, leading to an increase in molar specific capacitance from Ni3(HIH3‐TAT)2 to Ni3(HIBu3‐TAT)2. Partial exfoliation of Ni3(HIBu3‐TAT)2 renders redox active ligand moieties more accessible, and thus increases the dominance of faradaic processes. Our strategy of controlling charge storage mechanism through tuning the accessibility of redox‐active sites may motivate further design and engineering of electrode materials for EC. Faradaic contributions to charge storage increase as interlayer spacing widens in a series of Ni3(HIR3‐TAT)2 (R=H, Et, n‐Bu, n‐Pent) 2D conductive MOFs, as the charge storage mechanism shifts to adopt increasingly pseudocapacitive character. An optimum in terms of capacitance is reached, balancing faradaic contributions and resistances.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202402526</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-2429-0746</orcidid><orcidid>https://orcid.org/0000-0002-1262-1264</orcidid><orcidid>https://orcid.org/0000-0002-0059-9119</orcidid><orcidid>https://orcid.org/0000-0003-4969-9812</orcidid><orcidid>https://orcid.org/0009-0005-3123-6029</orcidid><orcidid>https://orcid.org/0000000200599119</orcidid><orcidid>https://orcid.org/0000000349699812</orcidid><orcidid>https://orcid.org/0000000324290746</orcidid><orcidid>https://orcid.org/0009000531236029</orcidid><orcidid>https://orcid.org/0000000212621264</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-04, Vol.136 (18), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_osti_scitechconnect_2328628
source Access via Wiley Online Library
subjects Accessibility
Capacitance
Chemical reactions
Conjugation
coordination polymers
electrochemical capacitors
Electrochemistry
Electrode materials
Electrode polarization
Energy storage
Functional groups
Interlayers
Ligands
Metal-organic frameworks
Metals
pseudocapacitance
Structure-function relationships
title Electrochemical Capacitance Traces with Interlayer Spacing in Two‐dimensional Conductive Metal–Organic Frameworks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T16%3A28%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrochemical%20Capacitance%20Traces%20with%20Interlayer%20Spacing%20in%20Two%E2%80%90dimensional%20Conductive%20Metal%E2%80%93Organic%20Frameworks&rft.jtitle=Angewandte%20Chemie&rft.au=Su,%20Alice%20Y.&rft.date=2024-04-24&rft.volume=136&rft.issue=18&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202402526&rft_dat=%3Cproquest_osti_%3E3039820495%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3039820495&rft_id=info:pmid/&rfr_iscdi=true