Optimization Stability in Excited-State-Specific Variational Monte Carlo

We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2023-02, Vol.19 (3), p.767-782
Hauptverfasser: Otis, Leon, Neuscamman, Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 3
container_start_page 767
container_title Journal of chemical theory and computation
container_volume 19
creator Otis, Leon
Neuscamman, Eric
description We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye molecule as a test case, we systematically perform minimizations using variants of the linear method as both a standalone algorithm and in a hybrid combination with accelerated descent. We demonstrate that adaptive step control is crucial for maintaining the linear method’s stability when optimizing complicated wave functions and that the hybrid method enjoys both greater stability and minimization performance.
doi_str_mv 10.1021/acs.jctc.2c00642
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2326966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783221308</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-81ca0719caa6523c206b26c437ad209e5be4aea00de3e6ec2596ca18bd2cb3c33</originalsourceid><addsrcrecordid>eNp1kc1P20AQxVdVUaHAvafKai8c6rA7Y2_sI4qgIIE48HFdjccTdSPHm3o3UuGvxyGBQyVOO1r93puPp9Q3oydGgzkljpMFJ54Aa20L-KQOTFnUeW3Bfn6vTbWvvsa40BqxAPyi9tFaCyVWB-rydpX80j9T8qHP7hI1vvPpKfN9dv6PfZI2Hz-T5HcrYT_3nD3S4F9p6rKb0CfJZjR04UjtzamLcrx7D9XDxfn97DK_vv19NTu7zqlATHllmPTU1ExkS0AGbRuwXOCUWtC1lI0UJKR1KyhWGMraMpmqaYEbZMRD9WPrG2LyLm5G5D8c-l44OUCwtbUjdLKFVkP4u5aY3NJHlq6jXsI6OpjaCrDUhR7Rn_-hi7AexuU2VIUABnU1UnpL8RBiHGTuVoNf0vDkjHabKNwYhdtE4XZRjJLvO-N1s5T2XfB2-xH4tQVepW9NP_R7AbDnk9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2783221308</pqid></control><display><type>article</type><title>Optimization Stability in Excited-State-Specific Variational Monte Carlo</title><source>American Chemical Society Journals</source><creator>Otis, Leon ; Neuscamman, Eric</creator><creatorcontrib>Otis, Leon ; Neuscamman, Eric ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><description>We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye molecule as a test case, we systematically perform minimizations using variants of the linear method as both a standalone algorithm and in a hybrid combination with accelerated descent. We demonstrate that adaptive step control is crucial for maintaining the linear method’s stability when optimizing complicated wave functions and that the hybrid method enjoys both greater stability and minimization performance.</description><identifier>ISSN: 1549-9618</identifier><identifier>EISSN: 1549-9626</identifier><identifier>DOI: 10.1021/acs.jctc.2c00642</identifier><identifier>PMID: 36662538</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adaptive control ; Algorithms ; Cyanine dyes ; energy ; excited states ; gradient descent ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Optimization ; Quantum Electronic Structure ; quantum Monte Carlo ; stability ; wave function ; Wave functions</subject><ispartof>Journal of chemical theory and computation, 2023-02, Vol.19 (3), p.767-782</ispartof><rights>2023 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 14, 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-81ca0719caa6523c206b26c437ad209e5be4aea00de3e6ec2596ca18bd2cb3c33</citedby><cites>FETCH-LOGICAL-a433t-81ca0719caa6523c206b26c437ad209e5be4aea00de3e6ec2596ca18bd2cb3c33</cites><orcidid>0000-0002-4760-8238 ; 0000-0003-4079-8347 ; 0000000340798347 ; 0000000247608238</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jctc.2c00642$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jctc.2c00642$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36662538$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2326966$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Otis, Leon</creatorcontrib><creatorcontrib>Neuscamman, Eric</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><title>Optimization Stability in Excited-State-Specific Variational Monte Carlo</title><title>Journal of chemical theory and computation</title><addtitle>J. Chem. Theory Comput</addtitle><description>We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye molecule as a test case, we systematically perform minimizations using variants of the linear method as both a standalone algorithm and in a hybrid combination with accelerated descent. We demonstrate that adaptive step control is crucial for maintaining the linear method’s stability when optimizing complicated wave functions and that the hybrid method enjoys both greater stability and minimization performance.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Cyanine dyes</subject><subject>energy</subject><subject>excited states</subject><subject>gradient descent</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Optimization</subject><subject>Quantum Electronic Structure</subject><subject>quantum Monte Carlo</subject><subject>stability</subject><subject>wave function</subject><subject>Wave functions</subject><issn>1549-9618</issn><issn>1549-9626</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1P20AQxVdVUaHAvafKai8c6rA7Y2_sI4qgIIE48HFdjccTdSPHm3o3UuGvxyGBQyVOO1r93puPp9Q3oydGgzkljpMFJ54Aa20L-KQOTFnUeW3Bfn6vTbWvvsa40BqxAPyi9tFaCyVWB-rydpX80j9T8qHP7hI1vvPpKfN9dv6PfZI2Hz-T5HcrYT_3nD3S4F9p6rKb0CfJZjR04UjtzamLcrx7D9XDxfn97DK_vv19NTu7zqlATHllmPTU1ExkS0AGbRuwXOCUWtC1lI0UJKR1KyhWGMraMpmqaYEbZMRD9WPrG2LyLm5G5D8c-l44OUCwtbUjdLKFVkP4u5aY3NJHlq6jXsI6OpjaCrDUhR7Rn_-hi7AexuU2VIUABnU1UnpL8RBiHGTuVoNf0vDkjHabKNwYhdtE4XZRjJLvO-N1s5T2XfB2-xH4tQVepW9NP_R7AbDnk9g</recordid><startdate>20230214</startdate><enddate>20230214</enddate><creator>Otis, Leon</creator><creator>Neuscamman, Eric</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-4760-8238</orcidid><orcidid>https://orcid.org/0000-0003-4079-8347</orcidid><orcidid>https://orcid.org/0000000340798347</orcidid><orcidid>https://orcid.org/0000000247608238</orcidid></search><sort><creationdate>20230214</creationdate><title>Optimization Stability in Excited-State-Specific Variational Monte Carlo</title><author>Otis, Leon ; Neuscamman, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-81ca0719caa6523c206b26c437ad209e5be4aea00de3e6ec2596ca18bd2cb3c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Cyanine dyes</topic><topic>energy</topic><topic>excited states</topic><topic>gradient descent</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Optimization</topic><topic>Quantum Electronic Structure</topic><topic>quantum Monte Carlo</topic><topic>stability</topic><topic>wave function</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otis, Leon</creatorcontrib><creatorcontrib>Neuscamman, Eric</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of chemical theory and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otis, Leon</au><au>Neuscamman, Eric</au><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization Stability in Excited-State-Specific Variational Monte Carlo</atitle><jtitle>Journal of chemical theory and computation</jtitle><addtitle>J. Chem. Theory Comput</addtitle><date>2023-02-14</date><risdate>2023</risdate><volume>19</volume><issue>3</issue><spage>767</spage><epage>782</epage><pages>767-782</pages><issn>1549-9618</issn><eissn>1549-9626</eissn><abstract>We investigate the issue of optimization stability in variance-based state-specific variational Monte Carlo, discussing the roles of the objective function, the complexity of wave function ansatz, the amount of sampling effort, and the choice of minimization algorithm. Using a small cyanine dye molecule as a test case, we systematically perform minimizations using variants of the linear method as both a standalone algorithm and in a hybrid combination with accelerated descent. We demonstrate that adaptive step control is crucial for maintaining the linear method’s stability when optimizing complicated wave functions and that the hybrid method enjoys both greater stability and minimization performance.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>36662538</pmid><doi>10.1021/acs.jctc.2c00642</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-4760-8238</orcidid><orcidid>https://orcid.org/0000-0003-4079-8347</orcidid><orcidid>https://orcid.org/0000000340798347</orcidid><orcidid>https://orcid.org/0000000247608238</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1549-9618
ispartof Journal of chemical theory and computation, 2023-02, Vol.19 (3), p.767-782
issn 1549-9618
1549-9626
language eng
recordid cdi_osti_scitechconnect_2326966
source American Chemical Society Journals
subjects Adaptive control
Algorithms
Cyanine dyes
energy
excited states
gradient descent
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Optimization
Quantum Electronic Structure
quantum Monte Carlo
stability
wave function
Wave functions
title Optimization Stability in Excited-State-Specific Variational Monte Carlo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A46%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20Stability%20in%20Excited-State-Specific%20Variational%20Monte%20Carlo&rft.jtitle=Journal%20of%20chemical%20theory%20and%20computation&rft.au=Otis,%20Leon&rft.aucorp=Lawrence%20Berkeley%20National%20Laboratory%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2023-02-14&rft.volume=19&rft.issue=3&rft.spage=767&rft.epage=782&rft.pages=767-782&rft.issn=1549-9618&rft.eissn=1549-9626&rft_id=info:doi/10.1021/acs.jctc.2c00642&rft_dat=%3Cproquest_osti_%3E2783221308%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2783221308&rft_id=info:pmid/36662538&rfr_iscdi=true