Polynomial chaos enhanced by dynamic mode decomposition for order-reduction of dynamic models
Thanks to their low computational cost, reduced-order models (ROMs) are indispensable in ensemble-based simulations used, e.g., for uncertainty quantification, inverse modeling, and optimization. Since data used to train a ROM are typically obtained by running a high-fidelity model (HFM) multiple ti...
Gespeichert in:
Veröffentlicht in: | Advances in water resources 2024-04, Vol.186 (C), p.104677, Article 104677 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!