Polynomial chaos enhanced by dynamic mode decomposition for order-reduction of dynamic models

Thanks to their low computational cost, reduced-order models (ROMs) are indispensable in ensemble-based simulations used, e.g., for uncertainty quantification, inverse modeling, and optimization. Since data used to train a ROM are typically obtained by running a high-fidelity model (HFM) multiple ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in water resources 2024-04, Vol.186 (C), p.104677, Article 104677
Hauptverfasser: Libero, G., Tartakovsky, D.M., Ciriello, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!