Amplified drought trends in Nepal increase the potential for Himalayan wildfires
In spring 2021, Nepal underwent a record wildfire season in which active fires were detected at a rate 10 times greater than the 2002–2020 average. Prior to these major wildfire events, the country experienced a prolonged precipitation deficit and extreme drought during the post-monsoon period (star...
Gespeichert in:
Veröffentlicht in: | Climatic change 2023-02, Vol.176 (2), p.17, Article 17 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In spring 2021, Nepal underwent a record wildfire season in which active fires were detected at a rate 10 times greater than the 2002–2020 average. Prior to these major wildfire events, the country experienced a prolonged precipitation deficit and extreme drought during the post-monsoon period (starting in October 2020). An analysis using observational, reanalysis, and climate model ensemble data indicates that both climate variability and climate change-induced severe drought conditions were at play. Further analysis of climate model outputs suggests the likely reoccurrence of drought conditions, thus favoring active wildfire seasons in Nepal throughout the twenty-first century. While the inter-model uncertainty is large and direct modeling of wildfire spread and suppression has not been completed, the demonstrated relationship between a drought index (the standardized precipitation and evapotranspiration index) and subsequent fire activity may offer actionable opportunities for forest managers to employ the monitoring and projection of climate anomalies at sub-seasonal to decadal timescales to inform their management strategies for Nepal’s wildlands. |
---|---|
ISSN: | 0165-0009 1573-1480 |
DOI: | 10.1007/s10584-023-03495-3 |