CDK phosphorylation regulates Mcm3 degradation in budding yeast
Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degra...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2018-11, Vol.506 (3), p.680-684 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 684 |
---|---|
container_issue | 3 |
container_start_page | 680 |
container_title | Biochemical and biophysical research communications |
container_volume | 506 |
creator | Yamamoto, Kaori Makino, Nishiho Nagai, Masayoshi Araki, Hiroyuki Ushimaru, Takashi |
description | Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation.
•CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication. |
doi_str_mv | 10.1016/j.bbrc.2018.10.149 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_23137244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X18323283</els_id><sourcerecordid>2127659431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVIabab_oEeiiGXXrydkWS5gkII26-QhFwSyE3Y0nijZdfeSHZg_33leJNjDkJi9Mw7w8PYF4QFAqrv60VdB7vggD8WY03qIzZD0JBzBHnMZgCgcq7x4YR9inENgCiV_shOBIhSaY0zdr78dZXtHruYTthvqt53bRZoNaQnxezGbkXmaBUqN335NqsH53y7yvZUxf6UfWiqTaTPh3vO7v_8vlv-y69v_14uL65zKwvoc9kUThUlKiXJlYLScMeBnKyFJmiw1FWhXGKtTUBTWcTSFQgCm1pSQ2LOzqbcLvbeROt7so-2a1uyveECRcmlTNS3idqF7mmg2Jutj5Y2m6qlboiGIy9VoWXi54xPqA1djIEaswt-W4W9QTCjXrM2o14z6n2pSZ2avh7yh3pL7q3l1WcCfk4AJRfPnsK4KrWWnA_jpq7z7-X_B20piqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127659431</pqid></control><display><type>article</type><title>CDK phosphorylation regulates Mcm3 degradation in budding yeast</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yamamoto, Kaori ; Makino, Nishiho ; Nagai, Masayoshi ; Araki, Hiroyuki ; Ushimaru, Takashi</creator><creatorcontrib>Yamamoto, Kaori ; Makino, Nishiho ; Nagai, Masayoshi ; Araki, Hiroyuki ; Ushimaru, Takashi</creatorcontrib><description>Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation.
•CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2018.10.149</identifier><identifier>PMID: 30376991</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Motifs ; CDK ; Cell Nucleus - metabolism ; Cyclin-Dependent Kinases - metabolism ; DNA REPLICATION ; MCM ; Mcm3 ; Minichromosome Maintenance Complex Component 3 - chemistry ; Minichromosome Maintenance Complex Component 3 - metabolism ; PHOSPHORYLATION ; PHOSPHOTRANSFERASES ; Proteolysis ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomycetales - metabolism ; SCF ; YEASTS</subject><ispartof>Biochemical and biophysical research communications, 2018-11, Vol.506 (3), p.680-684</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</citedby><cites>FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</cites><orcidid>0000-0003-4589-7408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2018.10.149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30376991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/23137244$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Kaori</creatorcontrib><creatorcontrib>Makino, Nishiho</creatorcontrib><creatorcontrib>Nagai, Masayoshi</creatorcontrib><creatorcontrib>Araki, Hiroyuki</creatorcontrib><creatorcontrib>Ushimaru, Takashi</creatorcontrib><title>CDK phosphorylation regulates Mcm3 degradation in budding yeast</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation.
•CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Motifs</subject><subject>CDK</subject><subject>Cell Nucleus - metabolism</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>DNA REPLICATION</subject><subject>MCM</subject><subject>Mcm3</subject><subject>Minichromosome Maintenance Complex Component 3 - chemistry</subject><subject>Minichromosome Maintenance Complex Component 3 - metabolism</subject><subject>PHOSPHORYLATION</subject><subject>PHOSPHOTRANSFERASES</subject><subject>Proteolysis</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomycetales - metabolism</subject><subject>SCF</subject><subject>YEASTS</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVIabab_oEeiiGXXrydkWS5gkII26-QhFwSyE3Y0nijZdfeSHZg_33leJNjDkJi9Mw7w8PYF4QFAqrv60VdB7vggD8WY03qIzZD0JBzBHnMZgCgcq7x4YR9inENgCiV_shOBIhSaY0zdr78dZXtHruYTthvqt53bRZoNaQnxezGbkXmaBUqN335NqsH53y7yvZUxf6UfWiqTaTPh3vO7v_8vlv-y69v_14uL65zKwvoc9kUThUlKiXJlYLScMeBnKyFJmiw1FWhXGKtTUBTWcTSFQgCm1pSQ2LOzqbcLvbeROt7so-2a1uyveECRcmlTNS3idqF7mmg2Jutj5Y2m6qlboiGIy9VoWXi54xPqA1djIEaswt-W4W9QTCjXrM2o14z6n2pSZ2avh7yh3pL7q3l1WcCfk4AJRfPnsK4KrWWnA_jpq7z7-X_B20piqc</recordid><startdate>20181130</startdate><enddate>20181130</enddate><creator>Yamamoto, Kaori</creator><creator>Makino, Nishiho</creator><creator>Nagai, Masayoshi</creator><creator>Araki, Hiroyuki</creator><creator>Ushimaru, Takashi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4589-7408</orcidid></search><sort><creationdate>20181130</creationdate><title>CDK phosphorylation regulates Mcm3 degradation in budding yeast</title><author>Yamamoto, Kaori ; Makino, Nishiho ; Nagai, Masayoshi ; Araki, Hiroyuki ; Ushimaru, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Motifs</topic><topic>CDK</topic><topic>Cell Nucleus - metabolism</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>DNA REPLICATION</topic><topic>MCM</topic><topic>Mcm3</topic><topic>Minichromosome Maintenance Complex Component 3 - chemistry</topic><topic>Minichromosome Maintenance Complex Component 3 - metabolism</topic><topic>PHOSPHORYLATION</topic><topic>PHOSPHOTRANSFERASES</topic><topic>Proteolysis</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomycetales - metabolism</topic><topic>SCF</topic><topic>YEASTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Kaori</creatorcontrib><creatorcontrib>Makino, Nishiho</creatorcontrib><creatorcontrib>Nagai, Masayoshi</creatorcontrib><creatorcontrib>Araki, Hiroyuki</creatorcontrib><creatorcontrib>Ushimaru, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Kaori</au><au>Makino, Nishiho</au><au>Nagai, Masayoshi</au><au>Araki, Hiroyuki</au><au>Ushimaru, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDK phosphorylation regulates Mcm3 degradation in budding yeast</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2018-11-30</date><risdate>2018</risdate><volume>506</volume><issue>3</issue><spage>680</spage><epage>684</epage><pages>680-684</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation.
•CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30376991</pmid><doi>10.1016/j.bbrc.2018.10.149</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4589-7408</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2018-11, Vol.506 (3), p.680-684 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_osti_scitechconnect_23137244 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | 60 APPLIED LIFE SCIENCES Amino Acid Motifs CDK Cell Nucleus - metabolism Cyclin-Dependent Kinases - metabolism DNA REPLICATION MCM Mcm3 Minichromosome Maintenance Complex Component 3 - chemistry Minichromosome Maintenance Complex Component 3 - metabolism PHOSPHORYLATION PHOSPHOTRANSFERASES Proteolysis Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Saccharomycetales - metabolism SCF YEASTS |
title | CDK phosphorylation regulates Mcm3 degradation in budding yeast |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDK%20phosphorylation%20regulates%20Mcm3%20degradation%20in%20budding%20yeast&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yamamoto,%20Kaori&rft.date=2018-11-30&rft.volume=506&rft.issue=3&rft.spage=680&rft.epage=684&rft.pages=680-684&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2018.10.149&rft_dat=%3Cproquest_osti_%3E2127659431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127659431&rft_id=info:pmid/30376991&rft_els_id=S0006291X18323283&rfr_iscdi=true |