CDK phosphorylation regulates Mcm3 degradation in budding yeast

Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-11, Vol.506 (3), p.680-684
Hauptverfasser: Yamamoto, Kaori, Makino, Nishiho, Nagai, Masayoshi, Araki, Hiroyuki, Ushimaru, Takashi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 684
container_issue 3
container_start_page 680
container_title Biochemical and biophysical research communications
container_volume 506
creator Yamamoto, Kaori
Makino, Nishiho
Nagai, Masayoshi
Araki, Hiroyuki
Ushimaru, Takashi
description Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation. •CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.
doi_str_mv 10.1016/j.bbrc.2018.10.149
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_23137244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X18323283</els_id><sourcerecordid>2127659431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVIabab_oEeiiGXXrydkWS5gkII26-QhFwSyE3Y0nijZdfeSHZg_33leJNjDkJi9Mw7w8PYF4QFAqrv60VdB7vggD8WY03qIzZD0JBzBHnMZgCgcq7x4YR9inENgCiV_shOBIhSaY0zdr78dZXtHruYTthvqt53bRZoNaQnxezGbkXmaBUqN335NqsH53y7yvZUxf6UfWiqTaTPh3vO7v_8vlv-y69v_14uL65zKwvoc9kUThUlKiXJlYLScMeBnKyFJmiw1FWhXGKtTUBTWcTSFQgCm1pSQ2LOzqbcLvbeROt7so-2a1uyveECRcmlTNS3idqF7mmg2Jutj5Y2m6qlboiGIy9VoWXi54xPqA1djIEaswt-W4W9QTCjXrM2o14z6n2pSZ2avh7yh3pL7q3l1WcCfk4AJRfPnsK4KrWWnA_jpq7z7-X_B20piqc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2127659431</pqid></control><display><type>article</type><title>CDK phosphorylation regulates Mcm3 degradation in budding yeast</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Yamamoto, Kaori ; Makino, Nishiho ; Nagai, Masayoshi ; Araki, Hiroyuki ; Ushimaru, Takashi</creator><creatorcontrib>Yamamoto, Kaori ; Makino, Nishiho ; Nagai, Masayoshi ; Araki, Hiroyuki ; Ushimaru, Takashi</creatorcontrib><description>Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation. •CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2018.10.149</identifier><identifier>PMID: 30376991</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; Amino Acid Motifs ; CDK ; Cell Nucleus - metabolism ; Cyclin-Dependent Kinases - metabolism ; DNA REPLICATION ; MCM ; Mcm3 ; Minichromosome Maintenance Complex Component 3 - chemistry ; Minichromosome Maintenance Complex Component 3 - metabolism ; PHOSPHORYLATION ; PHOSPHOTRANSFERASES ; Proteolysis ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomycetales - metabolism ; SCF ; YEASTS</subject><ispartof>Biochemical and biophysical research communications, 2018-11, Vol.506 (3), p.680-684</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</citedby><cites>FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</cites><orcidid>0000-0003-4589-7408</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2018.10.149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30376991$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/23137244$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamamoto, Kaori</creatorcontrib><creatorcontrib>Makino, Nishiho</creatorcontrib><creatorcontrib>Nagai, Masayoshi</creatorcontrib><creatorcontrib>Araki, Hiroyuki</creatorcontrib><creatorcontrib>Ushimaru, Takashi</creatorcontrib><title>CDK phosphorylation regulates Mcm3 degradation in budding yeast</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation. •CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>Amino Acid Motifs</subject><subject>CDK</subject><subject>Cell Nucleus - metabolism</subject><subject>Cyclin-Dependent Kinases - metabolism</subject><subject>DNA REPLICATION</subject><subject>MCM</subject><subject>Mcm3</subject><subject>Minichromosome Maintenance Complex Component 3 - chemistry</subject><subject>Minichromosome Maintenance Complex Component 3 - metabolism</subject><subject>PHOSPHORYLATION</subject><subject>PHOSPHOTRANSFERASES</subject><subject>Proteolysis</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomycetales - metabolism</subject><subject>SCF</subject><subject>YEASTS</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1r3DAQhkVIabab_oEeiiGXXrydkWS5gkII26-QhFwSyE3Y0nijZdfeSHZg_33leJNjDkJi9Mw7w8PYF4QFAqrv60VdB7vggD8WY03qIzZD0JBzBHnMZgCgcq7x4YR9inENgCiV_shOBIhSaY0zdr78dZXtHruYTthvqt53bRZoNaQnxezGbkXmaBUqN335NqsH53y7yvZUxf6UfWiqTaTPh3vO7v_8vlv-y69v_14uL65zKwvoc9kUThUlKiXJlYLScMeBnKyFJmiw1FWhXGKtTUBTWcTSFQgCm1pSQ2LOzqbcLvbeROt7so-2a1uyveECRcmlTNS3idqF7mmg2Jutj5Y2m6qlboiGIy9VoWXi54xPqA1djIEaswt-W4W9QTCjXrM2o14z6n2pSZ2avh7yh3pL7q3l1WcCfk4AJRfPnsK4KrWWnA_jpq7z7-X_B20piqc</recordid><startdate>20181130</startdate><enddate>20181130</enddate><creator>Yamamoto, Kaori</creator><creator>Makino, Nishiho</creator><creator>Nagai, Masayoshi</creator><creator>Araki, Hiroyuki</creator><creator>Ushimaru, Takashi</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4589-7408</orcidid></search><sort><creationdate>20181130</creationdate><title>CDK phosphorylation regulates Mcm3 degradation in budding yeast</title><author>Yamamoto, Kaori ; Makino, Nishiho ; Nagai, Masayoshi ; Araki, Hiroyuki ; Ushimaru, Takashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-4f5d6571664ed73e699d20ed4b39e0f179a56dc45cc4edfac117d51031fb4efe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>Amino Acid Motifs</topic><topic>CDK</topic><topic>Cell Nucleus - metabolism</topic><topic>Cyclin-Dependent Kinases - metabolism</topic><topic>DNA REPLICATION</topic><topic>MCM</topic><topic>Mcm3</topic><topic>Minichromosome Maintenance Complex Component 3 - chemistry</topic><topic>Minichromosome Maintenance Complex Component 3 - metabolism</topic><topic>PHOSPHORYLATION</topic><topic>PHOSPHOTRANSFERASES</topic><topic>Proteolysis</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomycetales - metabolism</topic><topic>SCF</topic><topic>YEASTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Kaori</creatorcontrib><creatorcontrib>Makino, Nishiho</creatorcontrib><creatorcontrib>Nagai, Masayoshi</creatorcontrib><creatorcontrib>Araki, Hiroyuki</creatorcontrib><creatorcontrib>Ushimaru, Takashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Kaori</au><au>Makino, Nishiho</au><au>Nagai, Masayoshi</au><au>Araki, Hiroyuki</au><au>Ushimaru, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CDK phosphorylation regulates Mcm3 degradation in budding yeast</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2018-11-30</date><risdate>2018</risdate><volume>506</volume><issue>3</issue><spage>680</spage><epage>684</epage><pages>680-684</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>Accurate regulation of activity and level of the MCM complex is critical for precise DNA replication and genome transmission. Cyclin-dependent kinase (CDK) negatively regulates nuclear localization of the MCM complex via phosphorylation of the Mcm3 subunit. More recently, we found that Mcm3 is degraded via the Skp1–Cullin–F-box (SCF)–proteasome axis in budding yeast. However, how Mcm3 degradation is regulated is largely unknown. Here, we show that CDK represses Mcm3 degradation. Phosphorylated Mcm3 was excluded from the nucleus, where SCF is predominantly located, although CDK-mediated phosphorylation itself generated a phosphodegron of Mcm3, stimulating the degradation of Mcm3 resident in the nucleus. Thus, CDK negatively regulated nuclear MCM levels by exclusion from the nucleus and degradation in the nucleus via Mcm3 phosphorylation. We will discuss the physiological importance of Mcm3 degradation. •CDK generates phosphodegron in Mcm3.•CDK represses SCF-mediated Mcm3 degradation by exclusion of the MCM complex from the nucleus.•Mcm3 degradation in the nucleus could be a compensatory backup system to protect against unscheduled DNA replication.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30376991</pmid><doi>10.1016/j.bbrc.2018.10.149</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-4589-7408</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2018-11, Vol.506 (3), p.680-684
issn 0006-291X
1090-2104
language eng
recordid cdi_osti_scitechconnect_23137244
source MEDLINE; Elsevier ScienceDirect Journals
subjects 60 APPLIED LIFE SCIENCES
Amino Acid Motifs
CDK
Cell Nucleus - metabolism
Cyclin-Dependent Kinases - metabolism
DNA REPLICATION
MCM
Mcm3
Minichromosome Maintenance Complex Component 3 - chemistry
Minichromosome Maintenance Complex Component 3 - metabolism
PHOSPHORYLATION
PHOSPHOTRANSFERASES
Proteolysis
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - metabolism
Saccharomycetales - metabolism
SCF
YEASTS
title CDK phosphorylation regulates Mcm3 degradation in budding yeast
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A40%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CDK%20phosphorylation%20regulates%20Mcm3%20degradation%20in%20budding%20yeast&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Yamamoto,%20Kaori&rft.date=2018-11-30&rft.volume=506&rft.issue=3&rft.spage=680&rft.epage=684&rft.pages=680-684&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2018.10.149&rft_dat=%3Cproquest_osti_%3E2127659431%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2127659431&rft_id=info:pmid/30376991&rft_els_id=S0006291X18323283&rfr_iscdi=true