Reverse the down regulation of miR-92b-3p by hypoxia can suppress the proliferation of pulmonary artery smooth muscle cells by targeting USP28

MiR-92b-3p has been shown to take part in several disease by regulate proliferation, apoptosis, differentiation and metastasis. However, the role of miR-92b-3p in pulmonary arterial hypertension (PAH) has not been illustrated clearly. Here, we found the level of miR-92b-3p which mainly located in th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-09, Vol.503 (4), p.3064-3077
Hauptverfasser: Hao, Xuewei, Ma, Cui, Chen, Shuo, Dang, Jie, Cheng, Xiaoya, Zhu, Daling
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MiR-92b-3p has been shown to take part in several disease by regulate proliferation, apoptosis, differentiation and metastasis. However, the role of miR-92b-3p in pulmonary arterial hypertension (PAH) has not been illustrated clearly. Here, we found the level of miR-92b-3p which mainly located in the smooth muscle layer was down-regulation under hypoxic condition. It can inhibit pulmonary artery smooth muscle cells (PASMCs) proliferation and cell cycle progression. Through luciferase assay, miR-92b-3p bound to the 3′-UTR of USP28. we found that there was a significant negative relation between the level of miR-92b-3p and USP28 at protein level and reversed the down regulation of miR-92b-3p by hypoxia can suppress the proliferation of pulmonary artery smooth muscle cells by targeting USP28. These results suggested that miR-92b-3p acted a potential proliferation regulator in PASMCs and it maybe a novel treatment target of PAH. •miR-92b-3p reverse the proliferaton of pulmonary artery smooth muscle cells under hypoxia condition.•miR-92b-3p regulate the protein level of USP28.•miR-92b-3p maybe a novel treatment target of pulmonary hypertension.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2018.08.095