Direct evidence that KLK4 is a hydroxyapatite-binding protein
The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for tra...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2018-01, Vol.495 (2), p.1896-1900 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1900 |
---|---|
container_issue | 2 |
container_start_page | 1896 |
container_title | Biochemical and biophysical research communications |
container_volume | 495 |
creator | Perez, Vidal A. Mangum, Jonathan E. Hubbard, Michael J. |
description | The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.
•Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed. |
doi_str_mv | 10.1016/j.bbrc.2017.12.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_23127486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X17324324</els_id><sourcerecordid>1976008135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</originalsourceid><addsrcrecordid>eNp9kMFO3DAURa0KVAboD3SBIrHpJuE923FsCRZoWlrESGyo1J3lOE7Ho5lkansQ8_d1OpQlq7c57-reQ8hnhAoBxdWqattgKwrYVEgr4PCBzBAUlBSBH5EZAIiSKvx1Qk5jXAEgcqE-khOqKFVMqhm5-eqDs6lwz75zg3VFWppUPCweeOFjYYrlvgvjy95sTfLJla0fOj_8LrZhTM4P5-S4N-voPr3eM_Lz7tvT_Ee5ePx-P79dlJZJnkrFUaIRppedccxijSIPqDmD1jpB65aj6due2V700zKUdStRiaZhTaYkOyOXh9wxJq-jzVXs0o7DkKtrypA2XIpMfTlQud2fnYtJb3y0br02gxt3UaNqBIBEVmeUHlAbxhiD6_U2-I0Je42gpwp6pSe5epKrkeosNz9dvObv2o3r3l7-28zA9QFw2cWzd2GqOlnt_knW3ejfy_8LI7WH-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976008135</pqid></control><display><type>article</type><title>Direct evidence that KLK4 is a hydroxyapatite-binding protein</title><source>Access via ScienceDirect (Elsevier)</source><creator>Perez, Vidal A. ; Mangum, Jonathan E. ; Hubbard, Michael J.</creator><creatorcontrib>Perez, Vidal A. ; Mangum, Jonathan E. ; Hubbard, Michael J.</creatorcontrib><description>The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.
•Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2017.12.040</identifier><identifier>PMID: 29229389</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; APATITES ; AUTOLYSIS ; Dental enamel hardening ; DETERGENTS ; Enamel defects ; Enamel matrix ; ENAMELS ; Hydroxyapatite binding ; KALLIKREIN ; KLK4 autolysis</subject><ispartof>Biochemical and biophysical research communications, 2018-01, Vol.495 (2), p.1896-1900</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</citedby><cites>FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2017.12.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29229389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/23127486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Vidal A.</creatorcontrib><creatorcontrib>Mangum, Jonathan E.</creatorcontrib><creatorcontrib>Hubbard, Michael J.</creatorcontrib><title>Direct evidence that KLK4 is a hydroxyapatite-binding protein</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.
•Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>APATITES</subject><subject>AUTOLYSIS</subject><subject>Dental enamel hardening</subject><subject>DETERGENTS</subject><subject>Enamel defects</subject><subject>Enamel matrix</subject><subject>ENAMELS</subject><subject>Hydroxyapatite binding</subject><subject>KALLIKREIN</subject><subject>KLK4 autolysis</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAURa0KVAboD3SBIrHpJuE923FsCRZoWlrESGyo1J3lOE7Ho5lkansQ8_d1OpQlq7c57-reQ8hnhAoBxdWqattgKwrYVEgr4PCBzBAUlBSBH5EZAIiSKvx1Qk5jXAEgcqE-khOqKFVMqhm5-eqDs6lwz75zg3VFWppUPCweeOFjYYrlvgvjy95sTfLJla0fOj_8LrZhTM4P5-S4N-voPr3eM_Lz7tvT_Ee5ePx-P79dlJZJnkrFUaIRppedccxijSIPqDmD1jpB65aj6due2V700zKUdStRiaZhTaYkOyOXh9wxJq-jzVXs0o7DkKtrypA2XIpMfTlQud2fnYtJb3y0br02gxt3UaNqBIBEVmeUHlAbxhiD6_U2-I0Je42gpwp6pSe5epKrkeosNz9dvObv2o3r3l7-28zA9QFw2cWzd2GqOlnt_knW3ejfy_8LI7WH-g</recordid><startdate>20180108</startdate><enddate>20180108</enddate><creator>Perez, Vidal A.</creator><creator>Mangum, Jonathan E.</creator><creator>Hubbard, Michael J.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20180108</creationdate><title>Direct evidence that KLK4 is a hydroxyapatite-binding protein</title><author>Perez, Vidal A. ; Mangum, Jonathan E. ; Hubbard, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>APATITES</topic><topic>AUTOLYSIS</topic><topic>Dental enamel hardening</topic><topic>DETERGENTS</topic><topic>Enamel defects</topic><topic>Enamel matrix</topic><topic>ENAMELS</topic><topic>Hydroxyapatite binding</topic><topic>KALLIKREIN</topic><topic>KLK4 autolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Vidal A.</creatorcontrib><creatorcontrib>Mangum, Jonathan E.</creatorcontrib><creatorcontrib>Hubbard, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Vidal A.</au><au>Mangum, Jonathan E.</au><au>Hubbard, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct evidence that KLK4 is a hydroxyapatite-binding protein</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2018-01-08</date><risdate>2018</risdate><volume>495</volume><issue>2</issue><spage>1896</spage><epage>1900</epage><pages>1896-1900</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation.
•Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29229389</pmid><doi>10.1016/j.bbrc.2017.12.040</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-291X |
ispartof | Biochemical and biophysical research communications, 2018-01, Vol.495 (2), p.1896-1900 |
issn | 0006-291X 1090-2104 |
language | eng |
recordid | cdi_osti_scitechconnect_23127486 |
source | Access via ScienceDirect (Elsevier) |
subjects | 60 APPLIED LIFE SCIENCES APATITES AUTOLYSIS Dental enamel hardening DETERGENTS Enamel defects Enamel matrix ENAMELS Hydroxyapatite binding KALLIKREIN KLK4 autolysis |
title | Direct evidence that KLK4 is a hydroxyapatite-binding protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20evidence%20that%20KLK4%20is%20a%20hydroxyapatite-binding%20protein&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Perez,%20Vidal%20A.&rft.date=2018-01-08&rft.volume=495&rft.issue=2&rft.spage=1896&rft.epage=1900&rft.pages=1896-1900&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2017.12.040&rft_dat=%3Cproquest_osti_%3E1976008135%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976008135&rft_id=info:pmid/29229389&rft_els_id=S0006291X17324324&rfr_iscdi=true |