Direct evidence that KLK4 is a hydroxyapatite-binding protein

The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemical and biophysical research communications 2018-01, Vol.495 (2), p.1896-1900
Hauptverfasser: Perez, Vidal A., Mangum, Jonathan E., Hubbard, Michael J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1900
container_issue 2
container_start_page 1896
container_title Biochemical and biophysical research communications
container_volume 495
creator Perez, Vidal A.
Mangum, Jonathan E.
Hubbard, Michael J.
description The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation. •Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.
doi_str_mv 10.1016/j.bbrc.2017.12.040
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_23127486</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006291X17324324</els_id><sourcerecordid>1976008135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</originalsourceid><addsrcrecordid>eNp9kMFO3DAURa0KVAboD3SBIrHpJuE923FsCRZoWlrESGyo1J3lOE7Ho5lkansQ8_d1OpQlq7c57-reQ8hnhAoBxdWqattgKwrYVEgr4PCBzBAUlBSBH5EZAIiSKvx1Qk5jXAEgcqE-khOqKFVMqhm5-eqDs6lwz75zg3VFWppUPCweeOFjYYrlvgvjy95sTfLJla0fOj_8LrZhTM4P5-S4N-voPr3eM_Lz7tvT_Ee5ePx-P79dlJZJnkrFUaIRppedccxijSIPqDmD1jpB65aj6due2V700zKUdStRiaZhTaYkOyOXh9wxJq-jzVXs0o7DkKtrypA2XIpMfTlQud2fnYtJb3y0br02gxt3UaNqBIBEVmeUHlAbxhiD6_U2-I0Je42gpwp6pSe5epKrkeosNz9dvObv2o3r3l7-28zA9QFw2cWzd2GqOlnt_knW3ejfy_8LI7WH-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1976008135</pqid></control><display><type>article</type><title>Direct evidence that KLK4 is a hydroxyapatite-binding protein</title><source>Access via ScienceDirect (Elsevier)</source><creator>Perez, Vidal A. ; Mangum, Jonathan E. ; Hubbard, Michael J.</creator><creatorcontrib>Perez, Vidal A. ; Mangum, Jonathan E. ; Hubbard, Michael J.</creatorcontrib><description>The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation. •Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.</description><identifier>ISSN: 0006-291X</identifier><identifier>EISSN: 1090-2104</identifier><identifier>DOI: 10.1016/j.bbrc.2017.12.040</identifier><identifier>PMID: 29229389</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>60 APPLIED LIFE SCIENCES ; APATITES ; AUTOLYSIS ; Dental enamel hardening ; DETERGENTS ; Enamel defects ; Enamel matrix ; ENAMELS ; Hydroxyapatite binding ; KALLIKREIN ; KLK4 autolysis</subject><ispartof>Biochemical and biophysical research communications, 2018-01, Vol.495 (2), p.1896-1900</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</citedby><cites>FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bbrc.2017.12.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29229389$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/23127486$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Perez, Vidal A.</creatorcontrib><creatorcontrib>Mangum, Jonathan E.</creatorcontrib><creatorcontrib>Hubbard, Michael J.</creatorcontrib><title>Direct evidence that KLK4 is a hydroxyapatite-binding protein</title><title>Biochemical and biophysical research communications</title><addtitle>Biochem Biophys Res Commun</addtitle><description>The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation. •Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.</description><subject>60 APPLIED LIFE SCIENCES</subject><subject>APATITES</subject><subject>AUTOLYSIS</subject><subject>Dental enamel hardening</subject><subject>DETERGENTS</subject><subject>Enamel defects</subject><subject>Enamel matrix</subject><subject>ENAMELS</subject><subject>Hydroxyapatite binding</subject><subject>KALLIKREIN</subject><subject>KLK4 autolysis</subject><issn>0006-291X</issn><issn>1090-2104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAURa0KVAboD3SBIrHpJuE923FsCRZoWlrESGyo1J3lOE7Ho5lkansQ8_d1OpQlq7c57-reQ8hnhAoBxdWqattgKwrYVEgr4PCBzBAUlBSBH5EZAIiSKvx1Qk5jXAEgcqE-khOqKFVMqhm5-eqDs6lwz75zg3VFWppUPCweeOFjYYrlvgvjy95sTfLJla0fOj_8LrZhTM4P5-S4N-voPr3eM_Lz7tvT_Ee5ePx-P79dlJZJnkrFUaIRppedccxijSIPqDmD1jpB65aj6due2V700zKUdStRiaZhTaYkOyOXh9wxJq-jzVXs0o7DkKtrypA2XIpMfTlQud2fnYtJb3y0br02gxt3UaNqBIBEVmeUHlAbxhiD6_U2-I0Je42gpwp6pSe5epKrkeosNz9dvObv2o3r3l7-28zA9QFw2cWzd2GqOlnt_knW3ejfy_8LI7WH-g</recordid><startdate>20180108</startdate><enddate>20180108</enddate><creator>Perez, Vidal A.</creator><creator>Mangum, Jonathan E.</creator><creator>Hubbard, Michael J.</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20180108</creationdate><title>Direct evidence that KLK4 is a hydroxyapatite-binding protein</title><author>Perez, Vidal A. ; Mangum, Jonathan E. ; Hubbard, Michael J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-94181a6af8dae3c15161015430bce625b41afbf3cf6f1016185b8196773754383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>60 APPLIED LIFE SCIENCES</topic><topic>APATITES</topic><topic>AUTOLYSIS</topic><topic>Dental enamel hardening</topic><topic>DETERGENTS</topic><topic>Enamel defects</topic><topic>Enamel matrix</topic><topic>ENAMELS</topic><topic>Hydroxyapatite binding</topic><topic>KALLIKREIN</topic><topic>KLK4 autolysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Vidal A.</creatorcontrib><creatorcontrib>Mangum, Jonathan E.</creatorcontrib><creatorcontrib>Hubbard, Michael J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Biochemical and biophysical research communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Vidal A.</au><au>Mangum, Jonathan E.</au><au>Hubbard, Michael J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct evidence that KLK4 is a hydroxyapatite-binding protein</atitle><jtitle>Biochemical and biophysical research communications</jtitle><addtitle>Biochem Biophys Res Commun</addtitle><date>2018-01-08</date><risdate>2018</risdate><volume>495</volume><issue>2</issue><spage>1896</spage><epage>1900</epage><pages>1896-1900</pages><issn>0006-291X</issn><eissn>1090-2104</eissn><abstract>The protease kallikrein 4 (KLK4) plays a pivotal role during dental enamel formation by degrading the major enamel protein, amelogenin, prior to the final steps of enamel hardening. KLK4 dysfunction is known to cause some types of developmental defect in enamel but the mechanisms responsible for transient retention of KLK4 in semi-hardened enamel matrix remain unclear. To address contradictory reports about the affinity of KLK4 for enamel hydroxyapatite-like mineral, we used pure components in quasi-physiological conditions and found that KLK4 binds hydroxyapatite directly. Hypothesising KLK4 self-destructs once amelogenin is degraded, biochemical analyses revealed that KLK4 progressively lost activity, became aggregated, and autofragmented when incubated without substrate in both the presence and absence of reducer. However, with non-ionic detergent present as proxy substrate, KLK4 remained active and intact throughout. These findings prompt a new mechanistic model and line of enquiry into the role of KLK4 in enamel hardening and malformation. •Contradictions about KLK4 binding to hydroxyapatite were resolved biochemically.•A proxy substrate stabilises KLK4 against inactivation, aggregation and autolysis.•A mechanistic model involving KLK4 retention and autodegradation is proposed.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29229389</pmid><doi>10.1016/j.bbrc.2017.12.040</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-291X
ispartof Biochemical and biophysical research communications, 2018-01, Vol.495 (2), p.1896-1900
issn 0006-291X
1090-2104
language eng
recordid cdi_osti_scitechconnect_23127486
source Access via ScienceDirect (Elsevier)
subjects 60 APPLIED LIFE SCIENCES
APATITES
AUTOLYSIS
Dental enamel hardening
DETERGENTS
Enamel defects
Enamel matrix
ENAMELS
Hydroxyapatite binding
KALLIKREIN
KLK4 autolysis
title Direct evidence that KLK4 is a hydroxyapatite-binding protein
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T12%3A37%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20evidence%20that%20KLK4%20is%20a%20hydroxyapatite-binding%20protein&rft.jtitle=Biochemical%20and%20biophysical%20research%20communications&rft.au=Perez,%20Vidal%20A.&rft.date=2018-01-08&rft.volume=495&rft.issue=2&rft.spage=1896&rft.epage=1900&rft.pages=1896-1900&rft.issn=0006-291X&rft.eissn=1090-2104&rft_id=info:doi/10.1016/j.bbrc.2017.12.040&rft_dat=%3Cproquest_osti_%3E1976008135%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1976008135&rft_id=info:pmid/29229389&rft_els_id=S0006291X17324324&rfr_iscdi=true