In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO2 from Hydroxides

Calcination is a solid‐state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathode materials. Here, correlative in situ X‐ray absorption/scattering spectr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-05, Vol.36 (21), p.e2312027-n/a
Hauptverfasser: Tayal, Akhil, Barai, Pallab, Zhong, Hui, Kahvecioglu, Ozgenur, Wang, Xiaoping, Pupek, Krzysztof Z., Ma, Lu, Ehrlich, Steven N., Srinivasan, Venkat, Qu, Xiaohui, Bai, Jianming, Wang, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 21
container_start_page e2312027
container_title Advanced materials (Weinheim)
container_volume 36
creator Tayal, Akhil
Barai, Pallab
Zhong, Hui
Kahvecioglu, Ozgenur
Wang, Xiaoping
Pupek, Krzysztof Z.
Ma, Lu
Ehrlich, Steven N.
Srinivasan, Venkat
Qu, Xiaohui
Bai, Jianming
Wang, Feng
description Calcination is a solid‐state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathode materials. Here, correlative in situ X‐ray absorption/scattering spectroscopy is used to investigate the calcination of nickel‐based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data‐driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low‐temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally‐ordered layered phase upon full lithiation but remains small in size. Subsequent high‐temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination. Calcination is a commonly used in making battery cathode materials. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathodes. This study unveils the kinetic crystallization process of forming LiNiO2, the archetypical Ni‐based cathode during calcination from hydroxides, providing insights into controlling structure and morphology through lithiation in the calcination process.
doi_str_mv 10.1002/adma.202312027
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2311937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2917865858</sourcerecordid><originalsourceid>FETCH-LOGICAL-o2937-937455ca633106ddb7b7d774e1de89ff9bf750bfccd4d05a3606156488ab78853</originalsourceid><addsrcrecordid>eNpdkUFP3DAQha2KSl2g154tuHAJteM4jrmtti2sugUk2rPl2E53UNYG2ylNfz1Gizj0MDMa6ZsZvXkIfaLknBJSf9Z2p89rUjNakniHFpTXtGqI5AdoQSTjlWyb7gM6TOmeECJb0i7QtPb4DvKE1z7B721OGHwOeKXzNlhX6mjA6wzB4yFEfBudBZPhj8N3s89blyBd4O_gXQaDV3FOWY8j_NtPhAFv4BpuajzEsMNXs43hL1iXjtH7QY_JfXytR-jXt68_V1fV5uZyvVpuqlBLJqoSDedGt4xR0lrbi15YIRpHrevkMMh-EJz0gzG2sYRrViRRXkR2uhddx9kROtnvDSmDSgayM1sTvHcmq_IoWi4U6GwPPcTwOLmU1Q6SceOovQtTUrWkomt5x7uCnv6H3ocp-iJBMcIlpbXgtFByTz3B6Gb1EGGn46woUS8-qRef1JtPavnlx_KtY88W0Yiu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3059112751</pqid></control><display><type>article</type><title>In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO2 from Hydroxides</title><source>Wiley Online Library All Journals</source><creator>Tayal, Akhil ; Barai, Pallab ; Zhong, Hui ; Kahvecioglu, Ozgenur ; Wang, Xiaoping ; Pupek, Krzysztof Z. ; Ma, Lu ; Ehrlich, Steven N. ; Srinivasan, Venkat ; Qu, Xiaohui ; Bai, Jianming ; Wang, Feng</creator><creatorcontrib>Tayal, Akhil ; Barai, Pallab ; Zhong, Hui ; Kahvecioglu, Ozgenur ; Wang, Xiaoping ; Pupek, Krzysztof Z. ; Ma, Lu ; Ehrlich, Steven N. ; Srinivasan, Venkat ; Qu, Xiaohui ; Bai, Jianming ; Wang, Feng ; Argonne National Laboratory (ANL), Argonne, IL (United States) ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Calcination is a solid‐state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathode materials. Here, correlative in situ X‐ray absorption/scattering spectroscopy is used to investigate the calcination of nickel‐based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data‐driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low‐temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally‐ordered layered phase upon full lithiation but remains small in size. Subsequent high‐temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination. Calcination is a commonly used in making battery cathode materials. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathodes. This study unveils the kinetic crystallization process of forming LiNiO2, the archetypical Ni‐based cathode during calcination from hydroxides, providing insights into controlling structure and morphology through lithiation in the calcination process.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202312027</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>calcination ; Cathodes ; correlative in situ X‐ray absorption/scattering spectroscopy ; Crystal growth ; Crystallization ; data-driven analysis ; Dehydration ; Electrode materials ; Hydroxides ; kinetic crystallization ; MATERIALS SCIENCE ; mesoscale modeling ; Nickel compounds ; nickel-based cathodes ; Nucleation ; Performance prediction ; Roasting ; Synthesis ; Thermodynamic equilibrium</subject><ispartof>Advanced materials (Weinheim), 2024-05, Vol.36 (21), p.e2312027-n/a</ispartof><rights>2024 Brookhaven Science Associates, LLC and UChicago Argonne, LLC. Advanced Materials published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5651-8405 ; 0000-0003-4068-9212 ; 0000-0001-8152-4209 ; 0000000340689212 ; 0000000181524209 ; 0000000156518405</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202312027$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202312027$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2311937$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Tayal, Akhil</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><creatorcontrib>Zhong, Hui</creatorcontrib><creatorcontrib>Kahvecioglu, Ozgenur</creatorcontrib><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Pupek, Krzysztof Z.</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Ehrlich, Steven N.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Qu, Xiaohui</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO2 from Hydroxides</title><title>Advanced materials (Weinheim)</title><description>Calcination is a solid‐state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathode materials. Here, correlative in situ X‐ray absorption/scattering spectroscopy is used to investigate the calcination of nickel‐based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data‐driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low‐temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally‐ordered layered phase upon full lithiation but remains small in size. Subsequent high‐temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination. Calcination is a commonly used in making battery cathode materials. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathodes. This study unveils the kinetic crystallization process of forming LiNiO2, the archetypical Ni‐based cathode during calcination from hydroxides, providing insights into controlling structure and morphology through lithiation in the calcination process.</description><subject>calcination</subject><subject>Cathodes</subject><subject>correlative in situ X‐ray absorption/scattering spectroscopy</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>data-driven analysis</subject><subject>Dehydration</subject><subject>Electrode materials</subject><subject>Hydroxides</subject><subject>kinetic crystallization</subject><subject>MATERIALS SCIENCE</subject><subject>mesoscale modeling</subject><subject>Nickel compounds</subject><subject>nickel-based cathodes</subject><subject>Nucleation</subject><subject>Performance prediction</subject><subject>Roasting</subject><subject>Synthesis</subject><subject>Thermodynamic equilibrium</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNpdkUFP3DAQha2KSl2g154tuHAJteM4jrmtti2sugUk2rPl2E53UNYG2ylNfz1Gizj0MDMa6ZsZvXkIfaLknBJSf9Z2p89rUjNakniHFpTXtGqI5AdoQSTjlWyb7gM6TOmeECJb0i7QtPb4DvKE1z7B721OGHwOeKXzNlhX6mjA6wzB4yFEfBudBZPhj8N3s89blyBd4O_gXQaDV3FOWY8j_NtPhAFv4BpuajzEsMNXs43hL1iXjtH7QY_JfXytR-jXt68_V1fV5uZyvVpuqlBLJqoSDedGt4xR0lrbi15YIRpHrevkMMh-EJz0gzG2sYRrViRRXkR2uhddx9kROtnvDSmDSgayM1sTvHcmq_IoWi4U6GwPPcTwOLmU1Q6SceOovQtTUrWkomt5x7uCnv6H3ocp-iJBMcIlpbXgtFByTz3B6Gb1EGGn46woUS8-qRef1JtPavnlx_KtY88W0Yiu</recordid><startdate>20240501</startdate><enddate>20240501</enddate><creator>Tayal, Akhil</creator><creator>Barai, Pallab</creator><creator>Zhong, Hui</creator><creator>Kahvecioglu, Ozgenur</creator><creator>Wang, Xiaoping</creator><creator>Pupek, Krzysztof Z.</creator><creator>Ma, Lu</creator><creator>Ehrlich, Steven N.</creator><creator>Srinivasan, Venkat</creator><creator>Qu, Xiaohui</creator><creator>Bai, Jianming</creator><creator>Wang, Feng</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-5651-8405</orcidid><orcidid>https://orcid.org/0000-0003-4068-9212</orcidid><orcidid>https://orcid.org/0000-0001-8152-4209</orcidid><orcidid>https://orcid.org/0000000340689212</orcidid><orcidid>https://orcid.org/0000000181524209</orcidid><orcidid>https://orcid.org/0000000156518405</orcidid></search><sort><creationdate>20240501</creationdate><title>In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO2 from Hydroxides</title><author>Tayal, Akhil ; Barai, Pallab ; Zhong, Hui ; Kahvecioglu, Ozgenur ; Wang, Xiaoping ; Pupek, Krzysztof Z. ; Ma, Lu ; Ehrlich, Steven N. ; Srinivasan, Venkat ; Qu, Xiaohui ; Bai, Jianming ; Wang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o2937-937455ca633106ddb7b7d774e1de89ff9bf750bfccd4d05a3606156488ab78853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>calcination</topic><topic>Cathodes</topic><topic>correlative in situ X‐ray absorption/scattering spectroscopy</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>data-driven analysis</topic><topic>Dehydration</topic><topic>Electrode materials</topic><topic>Hydroxides</topic><topic>kinetic crystallization</topic><topic>MATERIALS SCIENCE</topic><topic>mesoscale modeling</topic><topic>Nickel compounds</topic><topic>nickel-based cathodes</topic><topic>Nucleation</topic><topic>Performance prediction</topic><topic>Roasting</topic><topic>Synthesis</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tayal, Akhil</creatorcontrib><creatorcontrib>Barai, Pallab</creatorcontrib><creatorcontrib>Zhong, Hui</creatorcontrib><creatorcontrib>Kahvecioglu, Ozgenur</creatorcontrib><creatorcontrib>Wang, Xiaoping</creatorcontrib><creatorcontrib>Pupek, Krzysztof Z.</creatorcontrib><creatorcontrib>Ma, Lu</creatorcontrib><creatorcontrib>Ehrlich, Steven N.</creatorcontrib><creatorcontrib>Srinivasan, Venkat</creatorcontrib><creatorcontrib>Qu, Xiaohui</creatorcontrib><creatorcontrib>Bai, Jianming</creatorcontrib><creatorcontrib>Wang, Feng</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tayal, Akhil</au><au>Barai, Pallab</au><au>Zhong, Hui</au><au>Kahvecioglu, Ozgenur</au><au>Wang, Xiaoping</au><au>Pupek, Krzysztof Z.</au><au>Ma, Lu</au><au>Ehrlich, Steven N.</au><au>Srinivasan, Venkat</au><au>Qu, Xiaohui</au><au>Bai, Jianming</au><au>Wang, Feng</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO2 from Hydroxides</atitle><jtitle>Advanced materials (Weinheim)</jtitle><date>2024-05-01</date><risdate>2024</risdate><volume>36</volume><issue>21</issue><spage>e2312027</spage><epage>n/a</epage><pages>e2312027-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Calcination is a solid‐state synthesis process widely deployed in battery cathode manufacturing. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathode materials. Here, correlative in situ X‐ray absorption/scattering spectroscopy is used to investigate the calcination of nickel‐based cathodes, focusing specifically on the archetypal LiNiO2 from Ni(OH)2. Combining in situ observation with data‐driven analysis reveals concurrent lithiation and dehydration of Ni(OH)2 and consequently, the low‐temperature crystallization of layered LiNiO2 alongside lithiated rocksalts. Following early nucleation, LiNiO2 undergoes sluggish crystallization and structural ordering while depleting rocksalts; ultimately, it turns into a structurally‐ordered layered phase upon full lithiation but remains small in size. Subsequent high‐temperature sintering induces rapid crystal growth, accompanied by undesired delithiation and structural degradation. These observations are further corroborated by mesoscale modeling, emphasizing that, even though calcination is thermally driven and favors transformation towards thermodynamically equilibrium phases, the actual phase propagation and crystallization can be kinetically tuned via lithiation, providing freedom for structural and morphological control during cathode calcination. Calcination is a commonly used in making battery cathode materials. However, its inherent complexity associated with elusive intermediates hinders the predictive synthesis of high‐performance cathodes. This study unveils the kinetic crystallization process of forming LiNiO2, the archetypical Ni‐based cathode during calcination from hydroxides, providing insights into controlling structure and morphology through lithiation in the calcination process.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adma.202312027</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5651-8405</orcidid><orcidid>https://orcid.org/0000-0003-4068-9212</orcidid><orcidid>https://orcid.org/0000-0001-8152-4209</orcidid><orcidid>https://orcid.org/0000000340689212</orcidid><orcidid>https://orcid.org/0000000181524209</orcidid><orcidid>https://orcid.org/0000000156518405</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2024-05, Vol.36 (21), p.e2312027-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_osti_scitechconnect_2311937
source Wiley Online Library All Journals
subjects calcination
Cathodes
correlative in situ X‐ray absorption/scattering spectroscopy
Crystal growth
Crystallization
data-driven analysis
Dehydration
Electrode materials
Hydroxides
kinetic crystallization
MATERIALS SCIENCE
mesoscale modeling
Nickel compounds
nickel-based cathodes
Nucleation
Performance prediction
Roasting
Synthesis
Thermodynamic equilibrium
title In Situ Insights into Cathode Calcination for Predictive Synthesis: Kinetic Crystallization of LiNiO2 from Hydroxides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Situ%20Insights%20into%20Cathode%20Calcination%20for%20Predictive%20Synthesis:%20Kinetic%20Crystallization%20of%20LiNiO2%20from%20Hydroxides&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Tayal,%20Akhil&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2024-05-01&rft.volume=36&rft.issue=21&rft.spage=e2312027&rft.epage=n/a&rft.pages=e2312027-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202312027&rft_dat=%3Cproquest_osti_%3E2917865858%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3059112751&rft_id=info:pmid/&rfr_iscdi=true