Identifying crack tip position and stress intensity factors from displacement data

Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fracture 2023-09, Vol.243 (1), p.47-63
Hauptverfasser: Gupta, Swati, West, Grant, Wilson, Mark A., Grutzik, Scott J., Warner, Derek H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 47
container_title International journal of fracture
container_volume 243
creator Gupta, Swati
West, Grant
Wilson, Mark A.
Grutzik, Scott J.
Warner, Derek H.
description Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from noisy, unstructured displacement data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics fields to expedite the search for crack tip position and is particularly useful for noisy displacement data. The manuscript begins with an assessment of the importance of accurately locating crack tip position when quantifying the SIFs from displacement data. Next, the proposed separability approach for quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation approach, the performance of the separability approach is assessed. Cases involving both noisy data and systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. inelastic material behavior and finite geometries. An open source python implementation of the proposed approach is available for use by those doing field and laboratory work involving digital image correlation and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the crack tip position is not explicitly defined.
doi_str_mv 10.1007/s10704-023-00729-4
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2311471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2862651160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-dbd9242181456c8750bb97f86b6332023b60b84e58c5227f7a0adde2f62ffd553</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wFXQ9Whek8wspfgoFATRdcjkUVPbZEzSRf-90RHcubrcy3cO5x4ALjG6wQiJ24yRQKxBhDZ1JX3DjsAMt4I2hAt6DGaICt70jPSn4CznDUKoFx2bgZelsaF4d_BhDXVS-gMWP8IxZl98DFAFA3NJNmfoQ7Ghng_QKV1iytCluIPG53GrtN1VH2hUUefgxKltthe_cw7eHu5fF0_N6vlxubhbNZoyXhozmJ4wgjvMWq470aJh6IXr-MApJfWTgaOhY7btdEuIcEIhZYwljhPnTNvSObiafGMuXmbti9XvOoZgdZGEYswErtD1BI0pfu5tLnIT9ynUXJJ0nPAWY44qRSZKp5hzsk6Oye9UOkiM5HfBcipY1ljyp2DJqohOolzhsLbpz_of1Rdo1H2t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2862651160</pqid></control><display><type>article</type><title>Identifying crack tip position and stress intensity factors from displacement data</title><source>Springer Online Journals Complete</source><creator>Gupta, Swati ; West, Grant ; Wilson, Mark A. ; Grutzik, Scott J. ; Warner, Derek H.</creator><creatorcontrib>Gupta, Swati ; West, Grant ; Wilson, Mark A. ; Grutzik, Scott J. ; Warner, Derek H. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from noisy, unstructured displacement data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics fields to expedite the search for crack tip position and is particularly useful for noisy displacement data. The manuscript begins with an assessment of the importance of accurately locating crack tip position when quantifying the SIFs from displacement data. Next, the proposed separability approach for quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation approach, the performance of the separability approach is assessed. Cases involving both noisy data and systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. inelastic material behavior and finite geometries. An open source python implementation of the proposed approach is available for use by those doing field and laboratory work involving digital image correlation and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the crack tip position is not explicitly defined.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-023-00729-4</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic properties ; atomistic fracture ; Automotive Engineering ; Characterization and Evaluation of Materials ; Civil Engineering ; Classical Mechanics ; Crack tips ; digital image correlation ; Digital imaging ; displacement data ; Engineering ; finding crack tip positions ; fracture ; Fracture mechanics ; Inelastic materials ; Linear elastic fracture mechanics ; MATERIALS SCIENCE ; Mathematical analysis ; Mechanical Engineering ; Molecular dynamics ; separability approach ; Stress intensity factors ; Unstructured data</subject><ispartof>International journal of fracture, 2023-09, Vol.243 (1), p.47-63</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-dbd9242181456c8750bb97f86b6332023b60b84e58c5227f7a0adde2f62ffd553</citedby><cites>FETCH-LOGICAL-c346t-dbd9242181456c8750bb97f86b6332023b60b84e58c5227f7a0adde2f62ffd553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10704-023-00729-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10704-023-00729-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311471$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gupta, Swati</creatorcontrib><creatorcontrib>West, Grant</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Grutzik, Scott J.</creatorcontrib><creatorcontrib>Warner, Derek H.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Identifying crack tip position and stress intensity factors from displacement data</title><title>International journal of fracture</title><addtitle>Int J Fract</addtitle><description>Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from noisy, unstructured displacement data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics fields to expedite the search for crack tip position and is particularly useful for noisy displacement data. The manuscript begins with an assessment of the importance of accurately locating crack tip position when quantifying the SIFs from displacement data. Next, the proposed separability approach for quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation approach, the performance of the separability approach is assessed. Cases involving both noisy data and systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. inelastic material behavior and finite geometries. An open source python implementation of the proposed approach is available for use by those doing field and laboratory work involving digital image correlation and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the crack tip position is not explicitly defined.</description><subject>Asymptotic properties</subject><subject>atomistic fracture</subject><subject>Automotive Engineering</subject><subject>Characterization and Evaluation of Materials</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Crack tips</subject><subject>digital image correlation</subject><subject>Digital imaging</subject><subject>displacement data</subject><subject>Engineering</subject><subject>finding crack tip positions</subject><subject>fracture</subject><subject>Fracture mechanics</subject><subject>Inelastic materials</subject><subject>Linear elastic fracture mechanics</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Molecular dynamics</subject><subject>separability approach</subject><subject>Stress intensity factors</subject><subject>Unstructured data</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wFXQ9Whek8wspfgoFATRdcjkUVPbZEzSRf-90RHcubrcy3cO5x4ALjG6wQiJ24yRQKxBhDZ1JX3DjsAMt4I2hAt6DGaICt70jPSn4CznDUKoFx2bgZelsaF4d_BhDXVS-gMWP8IxZl98DFAFA3NJNmfoQ7Ghng_QKV1iytCluIPG53GrtN1VH2hUUefgxKltthe_cw7eHu5fF0_N6vlxubhbNZoyXhozmJ4wgjvMWq470aJh6IXr-MApJfWTgaOhY7btdEuIcEIhZYwljhPnTNvSObiafGMuXmbti9XvOoZgdZGEYswErtD1BI0pfu5tLnIT9ynUXJJ0nPAWY44qRSZKp5hzsk6Oye9UOkiM5HfBcipY1ljyp2DJqohOolzhsLbpz_of1Rdo1H2t</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Gupta, Swati</creator><creator>West, Grant</creator><creator>Wilson, Mark A.</creator><creator>Grutzik, Scott J.</creator><creator>Warner, Derek H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20230901</creationdate><title>Identifying crack tip position and stress intensity factors from displacement data</title><author>Gupta, Swati ; West, Grant ; Wilson, Mark A. ; Grutzik, Scott J. ; Warner, Derek H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-dbd9242181456c8750bb97f86b6332023b60b84e58c5227f7a0adde2f62ffd553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymptotic properties</topic><topic>atomistic fracture</topic><topic>Automotive Engineering</topic><topic>Characterization and Evaluation of Materials</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Crack tips</topic><topic>digital image correlation</topic><topic>Digital imaging</topic><topic>displacement data</topic><topic>Engineering</topic><topic>finding crack tip positions</topic><topic>fracture</topic><topic>Fracture mechanics</topic><topic>Inelastic materials</topic><topic>Linear elastic fracture mechanics</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Molecular dynamics</topic><topic>separability approach</topic><topic>Stress intensity factors</topic><topic>Unstructured data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gupta, Swati</creatorcontrib><creatorcontrib>West, Grant</creatorcontrib><creatorcontrib>Wilson, Mark A.</creatorcontrib><creatorcontrib>Grutzik, Scott J.</creatorcontrib><creatorcontrib>Warner, Derek H.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gupta, Swati</au><au>West, Grant</au><au>Wilson, Mark A.</au><au>Grutzik, Scott J.</au><au>Warner, Derek H.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying crack tip position and stress intensity factors from displacement data</atitle><jtitle>International journal of fracture</jtitle><stitle>Int J Fract</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>243</volume><issue>1</issue><spage>47</spage><epage>63</epage><pages>47-63</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><abstract>Fracture prognosis and characterization efforts require knowledge of crack tip position and the Stress Intensity Factors (SIFs) acting in the vicinity of the crack. Here, we present an efficient numerical approach to infer both of these characteristics under a consistent theoretical framework from noisy, unstructured displacement data. The novel approach utilizes the separability of the asymptotic linear elastic fracture mechanics fields to expedite the search for crack tip position and is particularly useful for noisy displacement data. The manuscript begins with an assessment of the importance of accurately locating crack tip position when quantifying the SIFs from displacement data. Next, the proposed separability approach for quickly inferring crack tip position is introduced. Comparing to the widely used displacement correlation approach, the performance of the separability approach is assessed. Cases involving both noisy data and systematic deviation from the asymptotic linear elastic fracture mechanics model are considered, e.g. inelastic material behavior and finite geometries. An open source python implementation of the proposed approach is available for use by those doing field and laboratory work involving digital image correlation and simulations, e.g. finite element, discrete element, molecular dynamics and peridynamics, where the crack tip position is not explicitly defined.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10704-023-00729-4</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2023-09, Vol.243 (1), p.47-63
issn 0376-9429
1573-2673
language eng
recordid cdi_osti_scitechconnect_2311471
source Springer Online Journals Complete
subjects Asymptotic properties
atomistic fracture
Automotive Engineering
Characterization and Evaluation of Materials
Civil Engineering
Classical Mechanics
Crack tips
digital image correlation
Digital imaging
displacement data
Engineering
finding crack tip positions
fracture
Fracture mechanics
Inelastic materials
Linear elastic fracture mechanics
MATERIALS SCIENCE
Mathematical analysis
Mechanical Engineering
Molecular dynamics
separability approach
Stress intensity factors
Unstructured data
title Identifying crack tip position and stress intensity factors from displacement data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20crack%20tip%20position%20and%20stress%20intensity%20factors%20from%20displacement%20data&rft.jtitle=International%20journal%20of%20fracture&rft.au=Gupta,%20Swati&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2023-09-01&rft.volume=243&rft.issue=1&rft.spage=47&rft.epage=63&rft.pages=47-63&rft.issn=0376-9429&rft.eissn=1573-2673&rft_id=info:doi/10.1007/s10704-023-00729-4&rft_dat=%3Cproquest_osti_%3E2862651160%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2862651160&rft_id=info:pmid/&rfr_iscdi=true