Towards Pareto optimal high entropy hydrides via data-driven materials discovery

The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simulations and large-scale sampling required to rigoro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-07, Vol.11 (29)
Hauptverfasser: Witman, Matthew David, Ling, Sanliang, Wadge, Matthew, Bouzidi, Anis, Pineda-Romero, Nayely, Clulow, Rebecca, Ek, Gustav, Chames, Jeffery M., Allendorf, Emily J., Agarwal, Sapan, Allendorf, Mark D., Walker, Gavin S., Grant, David M., Sahlberg, Martin, Zlotea, Claudia, Stavila, Vitalie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 29
container_start_page
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Witman, Matthew David
Ling, Sanliang
Wadge, Matthew
Bouzidi, Anis
Pineda-Romero, Nayely
Clulow, Rebecca
Ek, Gustav
Chames, Jeffery M.
Allendorf, Emily J.
Agarwal, Sapan
Allendorf, Mark D.
Walker, Gavin S.
Grant, David M.
Sahlberg, Martin
Zlotea, Claudia
Stavila, Vitalie
description The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simulations and large-scale sampling required to rigorously predict hydrogen equilibrium in these systems, we turn to compositional machine learning models as the most feasible approach to screen on the order of tens of thousands of candidate equimolar high entropy alloys (HEAs). Critically, we show that machine learning models can predict hydride thermodynamics and capacities with reasonable accuracy (e.g. a mean absolute error in desorption enthalpy prediction of ~5 kJ molH2–1) and that explainability analyses capture the competing trade-offs that arise from feature interdependence. We can therefore elucidate the multi-dimensional Pareto optimal set of materials, i.e., where two or more competing objective properties can't be simultaneously improved by another material. This provides rapid and efficient down-selection of the highest priority candidates for more time-consuming density functional theory investigations and experimental validation. Various targets were selected from the predicted Pareto front (with saturation capacities approaching two hydrogen per metal and desorption enthalpy less than 60 kJ molH2–1) and were experimentally synthesized, characterized, and tested amongst an international collaboration group to validate the proposed novel hydrides. Finally, additional top-predicted candidates are suggested to the community for future synthesis efforts, and we conclude with an outlook on improving the current approach for the next generation of computational HEA hydride discovery efforts.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2311382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311382</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23113823</originalsourceid><addsrcrecordid>eNqNirEKwjAURYMoWLT_8HAvpK3WdBbFsUP3EpKnibRJyQuV_r0dxNm73HMPd8WSgp94dj7W1frHQmxZSvTiSwTnVV0nrGn9WwZN0MiA0YMfox1kD8Y-DaCLwY8zmFkHq5FgshK0jDJb9oQOBhkxWNkTaEvKTxjmPds8FoHpt3fscLu2l3vmKdqOlI2ojPLOoYpdUeZ5KYryr9MH0i1Bkg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards Pareto optimal high entropy hydrides via data-driven materials discovery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Witman, Matthew David ; Ling, Sanliang ; Wadge, Matthew ; Bouzidi, Anis ; Pineda-Romero, Nayely ; Clulow, Rebecca ; Ek, Gustav ; Chames, Jeffery M. ; Allendorf, Emily J. ; Agarwal, Sapan ; Allendorf, Mark D. ; Walker, Gavin S. ; Grant, David M. ; Sahlberg, Martin ; Zlotea, Claudia ; Stavila, Vitalie</creator><creatorcontrib>Witman, Matthew David ; Ling, Sanliang ; Wadge, Matthew ; Bouzidi, Anis ; Pineda-Romero, Nayely ; Clulow, Rebecca ; Ek, Gustav ; Chames, Jeffery M. ; Allendorf, Emily J. ; Agarwal, Sapan ; Allendorf, Mark D. ; Walker, Gavin S. ; Grant, David M. ; Sahlberg, Martin ; Zlotea, Claudia ; Stavila, Vitalie ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simulations and large-scale sampling required to rigorously predict hydrogen equilibrium in these systems, we turn to compositional machine learning models as the most feasible approach to screen on the order of tens of thousands of candidate equimolar high entropy alloys (HEAs). Critically, we show that machine learning models can predict hydride thermodynamics and capacities with reasonable accuracy (e.g. a mean absolute error in desorption enthalpy prediction of ~5 kJ molH2–1) and that explainability analyses capture the competing trade-offs that arise from feature interdependence. We can therefore elucidate the multi-dimensional Pareto optimal set of materials, i.e., where two or more competing objective properties can't be simultaneously improved by another material. This provides rapid and efficient down-selection of the highest priority candidates for more time-consuming density functional theory investigations and experimental validation. Various targets were selected from the predicted Pareto front (with saturation capacities approaching two hydrogen per metal and desorption enthalpy less than 60 kJ molH2–1) and were experimentally synthesized, characterized, and tested amongst an international collaboration group to validate the proposed novel hydrides. Finally, additional top-predicted candidates are suggested to the community for future synthesis efforts, and we conclude with an outlook on improving the current approach for the next generation of computational HEA hydride discovery efforts.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>MATERIALS SCIENCE</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-07, Vol.11 (29)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000000348313842 ; 0000000337993248 ; 000000025157507X ; 0000000309810432 ; 0000000200964366 ; 0000000162635114 ; 0000000156458246 ; 0000000315747476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311382$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Witman, Matthew David</creatorcontrib><creatorcontrib>Ling, Sanliang</creatorcontrib><creatorcontrib>Wadge, Matthew</creatorcontrib><creatorcontrib>Bouzidi, Anis</creatorcontrib><creatorcontrib>Pineda-Romero, Nayely</creatorcontrib><creatorcontrib>Clulow, Rebecca</creatorcontrib><creatorcontrib>Ek, Gustav</creatorcontrib><creatorcontrib>Chames, Jeffery M.</creatorcontrib><creatorcontrib>Allendorf, Emily J.</creatorcontrib><creatorcontrib>Agarwal, Sapan</creatorcontrib><creatorcontrib>Allendorf, Mark D.</creatorcontrib><creatorcontrib>Walker, Gavin S.</creatorcontrib><creatorcontrib>Grant, David M.</creatorcontrib><creatorcontrib>Sahlberg, Martin</creatorcontrib><creatorcontrib>Zlotea, Claudia</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Towards Pareto optimal high entropy hydrides via data-driven materials discovery</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simulations and large-scale sampling required to rigorously predict hydrogen equilibrium in these systems, we turn to compositional machine learning models as the most feasible approach to screen on the order of tens of thousands of candidate equimolar high entropy alloys (HEAs). Critically, we show that machine learning models can predict hydride thermodynamics and capacities with reasonable accuracy (e.g. a mean absolute error in desorption enthalpy prediction of ~5 kJ molH2–1) and that explainability analyses capture the competing trade-offs that arise from feature interdependence. We can therefore elucidate the multi-dimensional Pareto optimal set of materials, i.e., where two or more competing objective properties can't be simultaneously improved by another material. This provides rapid and efficient down-selection of the highest priority candidates for more time-consuming density functional theory investigations and experimental validation. Various targets were selected from the predicted Pareto front (with saturation capacities approaching two hydrogen per metal and desorption enthalpy less than 60 kJ molH2–1) and were experimentally synthesized, characterized, and tested amongst an international collaboration group to validate the proposed novel hydrides. Finally, additional top-predicted candidates are suggested to the community for future synthesis efforts, and we conclude with an outlook on improving the current approach for the next generation of computational HEA hydride discovery efforts.</description><subject>MATERIALS SCIENCE</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNirEKwjAURYMoWLT_8HAvpK3WdBbFsUP3EpKnibRJyQuV_r0dxNm73HMPd8WSgp94dj7W1frHQmxZSvTiSwTnVV0nrGn9WwZN0MiA0YMfox1kD8Y-DaCLwY8zmFkHq5FgshK0jDJb9oQOBhkxWNkTaEvKTxjmPds8FoHpt3fscLu2l3vmKdqOlI2ojPLOoYpdUeZ5KYryr9MH0i1Bkg</recordid><startdate>20230707</startdate><enddate>20230707</enddate><creator>Witman, Matthew David</creator><creator>Ling, Sanliang</creator><creator>Wadge, Matthew</creator><creator>Bouzidi, Anis</creator><creator>Pineda-Romero, Nayely</creator><creator>Clulow, Rebecca</creator><creator>Ek, Gustav</creator><creator>Chames, Jeffery M.</creator><creator>Allendorf, Emily J.</creator><creator>Agarwal, Sapan</creator><creator>Allendorf, Mark D.</creator><creator>Walker, Gavin S.</creator><creator>Grant, David M.</creator><creator>Sahlberg, Martin</creator><creator>Zlotea, Claudia</creator><creator>Stavila, Vitalie</creator><general>Royal Society of Chemistry</general><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000000348313842</orcidid><orcidid>https://orcid.org/0000000337993248</orcidid><orcidid>https://orcid.org/000000025157507X</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><orcidid>https://orcid.org/0000000200964366</orcidid><orcidid>https://orcid.org/0000000162635114</orcidid><orcidid>https://orcid.org/0000000156458246</orcidid><orcidid>https://orcid.org/0000000315747476</orcidid></search><sort><creationdate>20230707</creationdate><title>Towards Pareto optimal high entropy hydrides via data-driven materials discovery</title><author>Witman, Matthew David ; Ling, Sanliang ; Wadge, Matthew ; Bouzidi, Anis ; Pineda-Romero, Nayely ; Clulow, Rebecca ; Ek, Gustav ; Chames, Jeffery M. ; Allendorf, Emily J. ; Agarwal, Sapan ; Allendorf, Mark D. ; Walker, Gavin S. ; Grant, David M. ; Sahlberg, Martin ; Zlotea, Claudia ; Stavila, Vitalie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23113823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>MATERIALS SCIENCE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Witman, Matthew David</creatorcontrib><creatorcontrib>Ling, Sanliang</creatorcontrib><creatorcontrib>Wadge, Matthew</creatorcontrib><creatorcontrib>Bouzidi, Anis</creatorcontrib><creatorcontrib>Pineda-Romero, Nayely</creatorcontrib><creatorcontrib>Clulow, Rebecca</creatorcontrib><creatorcontrib>Ek, Gustav</creatorcontrib><creatorcontrib>Chames, Jeffery M.</creatorcontrib><creatorcontrib>Allendorf, Emily J.</creatorcontrib><creatorcontrib>Agarwal, Sapan</creatorcontrib><creatorcontrib>Allendorf, Mark D.</creatorcontrib><creatorcontrib>Walker, Gavin S.</creatorcontrib><creatorcontrib>Grant, David M.</creatorcontrib><creatorcontrib>Sahlberg, Martin</creatorcontrib><creatorcontrib>Zlotea, Claudia</creatorcontrib><creatorcontrib>Stavila, Vitalie</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Witman, Matthew David</au><au>Ling, Sanliang</au><au>Wadge, Matthew</au><au>Bouzidi, Anis</au><au>Pineda-Romero, Nayely</au><au>Clulow, Rebecca</au><au>Ek, Gustav</au><au>Chames, Jeffery M.</au><au>Allendorf, Emily J.</au><au>Agarwal, Sapan</au><au>Allendorf, Mark D.</au><au>Walker, Gavin S.</au><au>Grant, David M.</au><au>Sahlberg, Martin</au><au>Zlotea, Claudia</au><au>Stavila, Vitalie</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards Pareto optimal high entropy hydrides via data-driven materials discovery</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-07-07</date><risdate>2023</risdate><volume>11</volume><issue>29</issue><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>The ability to rapidly screen material performance in the vast space of high entropy alloys is of critical importance to efficiently identify optimal hydride candidates for various use cases. Given the prohibitive complexity of first principles simulations and large-scale sampling required to rigorously predict hydrogen equilibrium in these systems, we turn to compositional machine learning models as the most feasible approach to screen on the order of tens of thousands of candidate equimolar high entropy alloys (HEAs). Critically, we show that machine learning models can predict hydride thermodynamics and capacities with reasonable accuracy (e.g. a mean absolute error in desorption enthalpy prediction of ~5 kJ molH2–1) and that explainability analyses capture the competing trade-offs that arise from feature interdependence. We can therefore elucidate the multi-dimensional Pareto optimal set of materials, i.e., where two or more competing objective properties can't be simultaneously improved by another material. This provides rapid and efficient down-selection of the highest priority candidates for more time-consuming density functional theory investigations and experimental validation. Various targets were selected from the predicted Pareto front (with saturation capacities approaching two hydrogen per metal and desorption enthalpy less than 60 kJ molH2–1) and were experimentally synthesized, characterized, and tested amongst an international collaboration group to validate the proposed novel hydrides. Finally, additional top-predicted candidates are suggested to the community for future synthesis efforts, and we conclude with an outlook on improving the current approach for the next generation of computational HEA hydride discovery efforts.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><orcidid>https://orcid.org/0000000348313842</orcidid><orcidid>https://orcid.org/0000000337993248</orcidid><orcidid>https://orcid.org/000000025157507X</orcidid><orcidid>https://orcid.org/0000000309810432</orcidid><orcidid>https://orcid.org/0000000200964366</orcidid><orcidid>https://orcid.org/0000000162635114</orcidid><orcidid>https://orcid.org/0000000156458246</orcidid><orcidid>https://orcid.org/0000000315747476</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-07, Vol.11 (29)
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_2311382
source Royal Society Of Chemistry Journals 2008-
subjects MATERIALS SCIENCE
title Towards Pareto optimal high entropy hydrides via data-driven materials discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T05%3A29%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20Pareto%20optimal%20high%20entropy%20hydrides%20via%20data-driven%20materials%20discovery&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Witman,%20Matthew%20David&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2023-07-07&rft.volume=11&rft.issue=29&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/&rft_dat=%3Costi%3E2311382%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true