Generative β-hairpin design using a residue-based physicochemical property landscape

De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicoc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2024-09, Vol.123 (17), p.2790-2806
Hauptverfasser: Satalkar, Vardhan, Degaga, Gemechis D., Li, Wei, Pang, Yui Tik, McShan, Andrew C., Gumbart, James C., Mitchell, Julie C., Torres, Matthew P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2806
container_issue 17
container_start_page 2790
container_title Biophysical journal
container_volume 123
creator Satalkar, Vardhan
Degaga, Gemechis D.
Li, Wei
Pang, Yui Tik
McShan, Andrew C.
Gumbart, James C.
Mitchell, Julie C.
Torres, Matthew P.
description De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.
doi_str_mv 10.1016/j.bpj.2024.01.029
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2311293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524000705</els_id><sourcerecordid>2921115972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2909-57469d818fc8a8d2bb097593013c33e0b109e624c6a7660e0a830c26537615a53</originalsourceid><addsrcrecordid>eNp9kMFO3DAURa0KBFPgA7qpIlZskr5nx04sVhWiUAmpG1hbjv2G8WgmSe0EaX6LD-k34dFAl6yennTu1dVh7BtChYDqx7rqxnXFgdcVYAVcf2ELlDUvAVp1xBYAoEpRa3nKvqa0BkAuAU_YqWi5blpRL9jTHfUU7RReqPj3Wq5siGPoC08pPPfFnEL_XNgi5tfPVHY2kS_G1S4FN7gVbYOzm2KMw0hx2hUb2_vk7Ejn7HhpN4ku3u8Ze_p1-3hzXz78uft98_OhdFyDLmVTK-1bbJeuta3nXQe6kVoACicEQYegSfHaKdsoBQS2FeC4kqJRKK0UZ-zy0DukKZjkwkRu5Ya-JzcZLhC5Fhm6OkB559-Z0mS2ITna5LU0zMlwzRFR6oZnFA-oi0NKkZZmjGFr484gmL1yszZZudkrN4AmK8-Z7-_1c7cl_z_x4TgD1weAsomXQHE_lHpHPsT9Tj-ET-rfACtvkKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921115972</pqid></control><display><type>article</type><title>Generative β-hairpin design using a residue-based physicochemical property landscape</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Satalkar, Vardhan ; Degaga, Gemechis D. ; Li, Wei ; Pang, Yui Tik ; McShan, Andrew C. ; Gumbart, James C. ; Mitchell, Julie C. ; Torres, Matthew P.</creator><creatorcontrib>Satalkar, Vardhan ; Degaga, Gemechis D. ; Li, Wei ; Pang, Yui Tik ; McShan, Andrew C. ; Gumbart, James C. ; Mitchell, Julie C. ; Torres, Matthew P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.01.029</identifier><identifier>PMID: 38297834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Generative Protein Design ; Hydrophobic and Hydrophilic Interactions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Models, Molecular ; Molecular Dynamics ; Neural Networks, Computer ; Peptides - chemistry ; Physicochemical properties ; Protein Structure, Secondary</subject><ispartof>Biophysical journal, 2024-09, Vol.123 (17), p.2790-2806</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2909-57469d818fc8a8d2bb097593013c33e0b109e624c6a7660e0a830c26537615a53</cites><orcidid>0000-0001-7296-4536 ; 0000000172964536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349524000705$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38297834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Satalkar, Vardhan</creatorcontrib><creatorcontrib>Degaga, Gemechis D.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Pang, Yui Tik</creatorcontrib><creatorcontrib>McShan, Andrew C.</creatorcontrib><creatorcontrib>Gumbart, James C.</creatorcontrib><creatorcontrib>Mitchell, Julie C.</creatorcontrib><creatorcontrib>Torres, Matthew P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Generative β-hairpin design using a residue-based physicochemical property landscape</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.</description><subject>Amino Acid Sequence</subject><subject>Generative Protein Design</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics</subject><subject>Neural Networks, Computer</subject><subject>Peptides - chemistry</subject><subject>Physicochemical properties</subject><subject>Protein Structure, Secondary</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAURa0KBFPgA7qpIlZskr5nx04sVhWiUAmpG1hbjv2G8WgmSe0EaX6LD-k34dFAl6yennTu1dVh7BtChYDqx7rqxnXFgdcVYAVcf2ELlDUvAVp1xBYAoEpRa3nKvqa0BkAuAU_YqWi5blpRL9jTHfUU7RReqPj3Wq5siGPoC08pPPfFnEL_XNgi5tfPVHY2kS_G1S4FN7gVbYOzm2KMw0hx2hUb2_vk7Ejn7HhpN4ku3u8Ze_p1-3hzXz78uft98_OhdFyDLmVTK-1bbJeuta3nXQe6kVoACicEQYegSfHaKdsoBQS2FeC4kqJRKK0UZ-zy0DukKZjkwkRu5Ya-JzcZLhC5Fhm6OkB559-Z0mS2ITna5LU0zMlwzRFR6oZnFA-oi0NKkZZmjGFr484gmL1yszZZudkrN4AmK8-Z7-_1c7cl_z_x4TgD1weAsomXQHE_lHpHPsT9Tj-ET-rfACtvkKY</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Satalkar, Vardhan</creator><creator>Degaga, Gemechis D.</creator><creator>Li, Wei</creator><creator>Pang, Yui Tik</creator><creator>McShan, Andrew C.</creator><creator>Gumbart, James C.</creator><creator>Mitchell, Julie C.</creator><creator>Torres, Matthew P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7296-4536</orcidid><orcidid>https://orcid.org/0000000172964536</orcidid></search><sort><creationdate>20240903</creationdate><title>Generative β-hairpin design using a residue-based physicochemical property landscape</title><author>Satalkar, Vardhan ; Degaga, Gemechis D. ; Li, Wei ; Pang, Yui Tik ; McShan, Andrew C. ; Gumbart, James C. ; Mitchell, Julie C. ; Torres, Matthew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2909-57469d818fc8a8d2bb097593013c33e0b109e624c6a7660e0a830c26537615a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Generative Protein Design</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics</topic><topic>Neural Networks, Computer</topic><topic>Peptides - chemistry</topic><topic>Physicochemical properties</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satalkar, Vardhan</creatorcontrib><creatorcontrib>Degaga, Gemechis D.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Pang, Yui Tik</creatorcontrib><creatorcontrib>McShan, Andrew C.</creatorcontrib><creatorcontrib>Gumbart, James C.</creatorcontrib><creatorcontrib>Mitchell, Julie C.</creatorcontrib><creatorcontrib>Torres, Matthew P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satalkar, Vardhan</au><au>Degaga, Gemechis D.</au><au>Li, Wei</au><au>Pang, Yui Tik</au><au>McShan, Andrew C.</au><au>Gumbart, James C.</au><au>Mitchell, Julie C.</au><au>Torres, Matthew P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative β-hairpin design using a residue-based physicochemical property landscape</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>123</volume><issue>17</issue><spage>2790</spage><epage>2806</epage><pages>2790-2806</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38297834</pmid><doi>10.1016/j.bpj.2024.01.029</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7296-4536</orcidid><orcidid>https://orcid.org/0000000172964536</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2024-09, Vol.123 (17), p.2790-2806
issn 0006-3495
1542-0086
1542-0086
language eng
recordid cdi_osti_scitechconnect_2311293
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Amino Acid Sequence
Generative Protein Design
Hydrophobic and Hydrophilic Interactions
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Models, Molecular
Molecular Dynamics
Neural Networks, Computer
Peptides - chemistry
Physicochemical properties
Protein Structure, Secondary
title Generative β-hairpin design using a residue-based physicochemical property landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20%CE%B2-hairpin%20design%20using%20a%20residue-based%20physicochemical%20property%20landscape&rft.jtitle=Biophysical%20journal&rft.au=Satalkar,%20Vardhan&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-09-03&rft.volume=123&rft.issue=17&rft.spage=2790&rft.epage=2806&rft.pages=2790-2806&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.01.029&rft_dat=%3Cproquest_osti_%3E2921115972%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921115972&rft_id=info:pmid/38297834&rft_els_id=S0006349524000705&rfr_iscdi=true