Generative β-hairpin design using a residue-based physicochemical property landscape
De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicoc...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2024-09, Vol.123 (17), p.2790-2806 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2806 |
---|---|
container_issue | 17 |
container_start_page | 2790 |
container_title | Biophysical journal |
container_volume | 123 |
creator | Satalkar, Vardhan Degaga, Gemechis D. Li, Wei Pang, Yui Tik McShan, Andrew C. Gumbart, James C. Mitchell, Julie C. Torres, Matthew P. |
description | De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits. |
doi_str_mv | 10.1016/j.bpj.2024.01.029 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2311293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349524000705</els_id><sourcerecordid>2921115972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2909-57469d818fc8a8d2bb097593013c33e0b109e624c6a7660e0a830c26537615a53</originalsourceid><addsrcrecordid>eNp9kMFO3DAURa0KBFPgA7qpIlZskr5nx04sVhWiUAmpG1hbjv2G8WgmSe0EaX6LD-k34dFAl6yennTu1dVh7BtChYDqx7rqxnXFgdcVYAVcf2ELlDUvAVp1xBYAoEpRa3nKvqa0BkAuAU_YqWi5blpRL9jTHfUU7RReqPj3Wq5siGPoC08pPPfFnEL_XNgi5tfPVHY2kS_G1S4FN7gVbYOzm2KMw0hx2hUb2_vk7Ejn7HhpN4ku3u8Ze_p1-3hzXz78uft98_OhdFyDLmVTK-1bbJeuta3nXQe6kVoACicEQYegSfHaKdsoBQS2FeC4kqJRKK0UZ-zy0DukKZjkwkRu5Ya-JzcZLhC5Fhm6OkB559-Z0mS2ITna5LU0zMlwzRFR6oZnFA-oi0NKkZZmjGFr484gmL1yszZZudkrN4AmK8-Z7-_1c7cl_z_x4TgD1weAsomXQHE_lHpHPsT9Tj-ET-rfACtvkKY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921115972</pqid></control><display><type>article</type><title>Generative β-hairpin design using a residue-based physicochemical property landscape</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Satalkar, Vardhan ; Degaga, Gemechis D. ; Li, Wei ; Pang, Yui Tik ; McShan, Andrew C. ; Gumbart, James C. ; Mitchell, Julie C. ; Torres, Matthew P.</creator><creatorcontrib>Satalkar, Vardhan ; Degaga, Gemechis D. ; Li, Wei ; Pang, Yui Tik ; McShan, Andrew C. ; Gumbart, James C. ; Mitchell, Julie C. ; Torres, Matthew P. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.</description><identifier>ISSN: 0006-3495</identifier><identifier>ISSN: 1542-0086</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2024.01.029</identifier><identifier>PMID: 38297834</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Generative Protein Design ; Hydrophobic and Hydrophilic Interactions ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Models, Molecular ; Molecular Dynamics ; Neural Networks, Computer ; Peptides - chemistry ; Physicochemical properties ; Protein Structure, Secondary</subject><ispartof>Biophysical journal, 2024-09, Vol.123 (17), p.2790-2806</ispartof><rights>2024 Biophysical Society</rights><rights>Copyright © 2024 Biophysical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2909-57469d818fc8a8d2bb097593013c33e0b109e624c6a7660e0a830c26537615a53</cites><orcidid>0000-0001-7296-4536 ; 0000000172964536</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0006349524000705$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38297834$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311293$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Satalkar, Vardhan</creatorcontrib><creatorcontrib>Degaga, Gemechis D.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Pang, Yui Tik</creatorcontrib><creatorcontrib>McShan, Andrew C.</creatorcontrib><creatorcontrib>Gumbart, James C.</creatorcontrib><creatorcontrib>Mitchell, Julie C.</creatorcontrib><creatorcontrib>Torres, Matthew P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Generative β-hairpin design using a residue-based physicochemical property landscape</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.</description><subject>Amino Acid Sequence</subject><subject>Generative Protein Design</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Models, Molecular</subject><subject>Molecular Dynamics</subject><subject>Neural Networks, Computer</subject><subject>Peptides - chemistry</subject><subject>Physicochemical properties</subject><subject>Protein Structure, Secondary</subject><issn>0006-3495</issn><issn>1542-0086</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMFO3DAURa0KBFPgA7qpIlZskr5nx04sVhWiUAmpG1hbjv2G8WgmSe0EaX6LD-k34dFAl6yennTu1dVh7BtChYDqx7rqxnXFgdcVYAVcf2ELlDUvAVp1xBYAoEpRa3nKvqa0BkAuAU_YqWi5blpRL9jTHfUU7RReqPj3Wq5siGPoC08pPPfFnEL_XNgi5tfPVHY2kS_G1S4FN7gVbYOzm2KMw0hx2hUb2_vk7Ejn7HhpN4ku3u8Ze_p1-3hzXz78uft98_OhdFyDLmVTK-1bbJeuta3nXQe6kVoACicEQYegSfHaKdsoBQS2FeC4kqJRKK0UZ-zy0DukKZjkwkRu5Ya-JzcZLhC5Fhm6OkB559-Z0mS2ITna5LU0zMlwzRFR6oZnFA-oi0NKkZZmjGFr484gmL1yszZZudkrN4AmK8-Z7-_1c7cl_z_x4TgD1weAsomXQHE_lHpHPsT9Tj-ET-rfACtvkKY</recordid><startdate>20240903</startdate><enddate>20240903</enddate><creator>Satalkar, Vardhan</creator><creator>Degaga, Gemechis D.</creator><creator>Li, Wei</creator><creator>Pang, Yui Tik</creator><creator>McShan, Andrew C.</creator><creator>Gumbart, James C.</creator><creator>Mitchell, Julie C.</creator><creator>Torres, Matthew P.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7296-4536</orcidid><orcidid>https://orcid.org/0000000172964536</orcidid></search><sort><creationdate>20240903</creationdate><title>Generative β-hairpin design using a residue-based physicochemical property landscape</title><author>Satalkar, Vardhan ; Degaga, Gemechis D. ; Li, Wei ; Pang, Yui Tik ; McShan, Andrew C. ; Gumbart, James C. ; Mitchell, Julie C. ; Torres, Matthew P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2909-57469d818fc8a8d2bb097593013c33e0b109e624c6a7660e0a830c26537615a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Amino Acid Sequence</topic><topic>Generative Protein Design</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Models, Molecular</topic><topic>Molecular Dynamics</topic><topic>Neural Networks, Computer</topic><topic>Peptides - chemistry</topic><topic>Physicochemical properties</topic><topic>Protein Structure, Secondary</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Satalkar, Vardhan</creatorcontrib><creatorcontrib>Degaga, Gemechis D.</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Pang, Yui Tik</creatorcontrib><creatorcontrib>McShan, Andrew C.</creatorcontrib><creatorcontrib>Gumbart, James C.</creatorcontrib><creatorcontrib>Mitchell, Julie C.</creatorcontrib><creatorcontrib>Torres, Matthew P.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Satalkar, Vardhan</au><au>Degaga, Gemechis D.</au><au>Li, Wei</au><au>Pang, Yui Tik</au><au>McShan, Andrew C.</au><au>Gumbart, James C.</au><au>Mitchell, Julie C.</au><au>Torres, Matthew P.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generative β-hairpin design using a residue-based physicochemical property landscape</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2024-09-03</date><risdate>2024</risdate><volume>123</volume><issue>17</issue><spage>2790</spage><epage>2806</epage><pages>2790-2806</pages><issn>0006-3495</issn><issn>1542-0086</issn><eissn>1542-0086</eissn><abstract>De novo peptide design is a new frontier that has broad application potential in the biological and biomedical fields. Most existing models for de novo peptide design are largely based on sequence homology that can be restricted based on evolutionarily derived protein sequences and lack the physicochemical context essential in protein folding. Generative machine learning for de novo peptide design is a promising way to synthesize theoretical data that are based on, but unique from, the observable universe. In this study, we created and tested a custom peptide generative adversarial network intended to design peptide sequences that can fold into the β-hairpin secondary structure. This deep neural network model is designed to establish a preliminary foundation of the generative approach based on physicochemical and conformational properties of 20 canonical amino acids, for example, hydrophobicity and residue volume, using extant structure-specific sequence data from the PDB. The beta generative adversarial network model robustly distinguishes secondary structures of β hairpin from α helix and intrinsically disordered peptides with an accuracy of up to 96% and generates artificial β-hairpin peptide sequences with minimum sequence identities around 31% and 50% when compared against the current NCBI PDB and nonredundant databases, respectively. These results highlight the potential of generative models specifically anchored by physicochemical and conformational property features of amino acids to expand the sequence-to-structure landscape of proteins beyond evolutionary limits.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>38297834</pmid><doi>10.1016/j.bpj.2024.01.029</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7296-4536</orcidid><orcidid>https://orcid.org/0000000172964536</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2024-09, Vol.123 (17), p.2790-2806 |
issn | 0006-3495 1542-0086 1542-0086 |
language | eng |
recordid | cdi_osti_scitechconnect_2311293 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Amino Acid Sequence Generative Protein Design Hydrophobic and Hydrophilic Interactions INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Models, Molecular Molecular Dynamics Neural Networks, Computer Peptides - chemistry Physicochemical properties Protein Structure, Secondary |
title | Generative β-hairpin design using a residue-based physicochemical property landscape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A41%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generative%20%CE%B2-hairpin%20design%20using%20a%20residue-based%20physicochemical%20property%20landscape&rft.jtitle=Biophysical%20journal&rft.au=Satalkar,%20Vardhan&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2024-09-03&rft.volume=123&rft.issue=17&rft.spage=2790&rft.epage=2806&rft.pages=2790-2806&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2024.01.029&rft_dat=%3Cproquest_osti_%3E2921115972%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921115972&rft_id=info:pmid/38297834&rft_els_id=S0006349524000705&rfr_iscdi=true |