Deep energy-pressure regression for a thermodynamically consistent EOS model

In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning: science and technology 2024-02, Vol.5 (1)
Hauptverfasser: Yu, Dayou, Pandey, Deep Shankar, Hinz, Joshua, Mihaylov, Deyan, Karasiev, Valentin V., Hu, S. X., Yu, Qi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Machine learning: science and technology
container_volume 5
creator Yu, Dayou
Pandey, Deep Shankar
Hinz, Joshua
Mihaylov, Deyan
Karasiev, Valentin V.
Hu, S. X.
Yu, Qi
description In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant physics properties and (2) physical interpretability to support important physics-related downstream applications. We first identify a set of fundamental challenges from the accuracy perspective, including an extremely wide range of input/output space and highly sparse training data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the black-box nature makes it difficult to provide physically interpretable results, leading to weak accountability of prediction results outside the training range and lack of guarantee to meet important thermodynamic consistency constraints. To this end, we propose a principled deep regression model that can be trained following a meta-learning style to predict the desired quantities with a high accuracy using scarce training data. We further introduce a uniquely designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is conducted to verify that necessary thermodynamic consistency conditions are maintained. Our evaluation results show an excellent fit of the EOS table and the predicted values are ready to use for important physics-related tasks.
format Article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_2309795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2309795</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_23097953</originalsourceid><addsrcrecordid>eNqNi7EKwjAURYMoWLT_8HAvpAlROmvFQXDQXUJ8bSNpUvLi0L-3goOj0zlw7p2xTGylKESp5PzHlywnenLOhSqlEjxj5wPiAOgxtmMxRCR6RYSI7Udt8NCECBpSh7EPj9Hr3hrt3AgmeLKU0CeoL1eYIro1WzTaEeZfrtjmWN_2pyJQsncyNqHppqNHk-5C8mpXKfnX6A2hSz_v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deep energy-pressure regression for a thermodynamically consistent EOS model</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yu, Dayou ; Pandey, Deep Shankar ; Hinz, Joshua ; Mihaylov, Deyan ; Karasiev, Valentin V. ; Hu, S. X. ; Yu, Qi</creator><creatorcontrib>Yu, Dayou ; Pandey, Deep Shankar ; Hinz, Joshua ; Mihaylov, Deyan ; Karasiev, Valentin V. ; Hu, S. X. ; Yu, Qi ; Univ. of Rochester, NY (United States)</creatorcontrib><description>In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant physics properties and (2) physical interpretability to support important physics-related downstream applications. We first identify a set of fundamental challenges from the accuracy perspective, including an extremely wide range of input/output space and highly sparse training data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the black-box nature makes it difficult to provide physically interpretable results, leading to weak accountability of prediction results outside the training range and lack of guarantee to meet important thermodynamic consistency constraints. To this end, we propose a principled deep regression model that can be trained following a meta-learning style to predict the desired quantities with a high accuracy using scarce training data. We further introduce a uniquely designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is conducted to verify that necessary thermodynamic consistency conditions are maintained. Our evaluation results show an excellent fit of the EOS table and the predicted values are ready to use for important physics-related tasks.</description><identifier>ISSN: 2632-2153</identifier><identifier>EISSN: 2632-2153</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>equation-of-state ; MATHEMATICS AND COMPUTING ; meta-learning ; uncertainty quantification</subject><ispartof>Machine learning: science and technology, 2024-02, Vol.5 (1)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009000614043716 ; 0000000288745503 ; 0000000334456797 ; 0000000204265407 ; 0009000223734907 ; 0000000324653818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2309795$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Dayou</creatorcontrib><creatorcontrib>Pandey, Deep Shankar</creatorcontrib><creatorcontrib>Hinz, Joshua</creatorcontrib><creatorcontrib>Mihaylov, Deyan</creatorcontrib><creatorcontrib>Karasiev, Valentin V.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><title>Deep energy-pressure regression for a thermodynamically consistent EOS model</title><title>Machine learning: science and technology</title><description>In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant physics properties and (2) physical interpretability to support important physics-related downstream applications. We first identify a set of fundamental challenges from the accuracy perspective, including an extremely wide range of input/output space and highly sparse training data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the black-box nature makes it difficult to provide physically interpretable results, leading to weak accountability of prediction results outside the training range and lack of guarantee to meet important thermodynamic consistency constraints. To this end, we propose a principled deep regression model that can be trained following a meta-learning style to predict the desired quantities with a high accuracy using scarce training data. We further introduce a uniquely designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is conducted to verify that necessary thermodynamic consistency conditions are maintained. Our evaluation results show an excellent fit of the EOS table and the predicted values are ready to use for important physics-related tasks.</description><subject>equation-of-state</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>meta-learning</subject><subject>uncertainty quantification</subject><issn>2632-2153</issn><issn>2632-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqNi7EKwjAURYMoWLT_8HAvpAlROmvFQXDQXUJ8bSNpUvLi0L-3goOj0zlw7p2xTGylKESp5PzHlywnenLOhSqlEjxj5wPiAOgxtmMxRCR6RYSI7Udt8NCECBpSh7EPj9Hr3hrt3AgmeLKU0CeoL1eYIro1WzTaEeZfrtjmWN_2pyJQsncyNqHppqNHk-5C8mpXKfnX6A2hSz_v</recordid><startdate>20240220</startdate><enddate>20240220</enddate><creator>Yu, Dayou</creator><creator>Pandey, Deep Shankar</creator><creator>Hinz, Joshua</creator><creator>Mihaylov, Deyan</creator><creator>Karasiev, Valentin V.</creator><creator>Hu, S. X.</creator><creator>Yu, Qi</creator><general>IOP Publishing</general><scope>OTOTI</scope><orcidid>https://orcid.org/0009000614043716</orcidid><orcidid>https://orcid.org/0000000288745503</orcidid><orcidid>https://orcid.org/0000000334456797</orcidid><orcidid>https://orcid.org/0000000204265407</orcidid><orcidid>https://orcid.org/0009000223734907</orcidid><orcidid>https://orcid.org/0000000324653818</orcidid></search><sort><creationdate>20240220</creationdate><title>Deep energy-pressure regression for a thermodynamically consistent EOS model</title><author>Yu, Dayou ; Pandey, Deep Shankar ; Hinz, Joshua ; Mihaylov, Deyan ; Karasiev, Valentin V. ; Hu, S. X. ; Yu, Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_23097953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>equation-of-state</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>meta-learning</topic><topic>uncertainty quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Dayou</creatorcontrib><creatorcontrib>Pandey, Deep Shankar</creatorcontrib><creatorcontrib>Hinz, Joshua</creatorcontrib><creatorcontrib>Mihaylov, Deyan</creatorcontrib><creatorcontrib>Karasiev, Valentin V.</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Yu, Qi</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Machine learning: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Dayou</au><au>Pandey, Deep Shankar</au><au>Hinz, Joshua</au><au>Mihaylov, Deyan</au><au>Karasiev, Valentin V.</au><au>Hu, S. X.</au><au>Yu, Qi</au><aucorp>Univ. of Rochester, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep energy-pressure regression for a thermodynamically consistent EOS model</atitle><jtitle>Machine learning: science and technology</jtitle><date>2024-02-20</date><risdate>2024</risdate><volume>5</volume><issue>1</issue><issn>2632-2153</issn><eissn>2632-2153</eissn><abstract>In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant physics properties and (2) physical interpretability to support important physics-related downstream applications. We first identify a set of fundamental challenges from the accuracy perspective, including an extremely wide range of input/output space and highly sparse training data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the black-box nature makes it difficult to provide physically interpretable results, leading to weak accountability of prediction results outside the training range and lack of guarantee to meet important thermodynamic consistency constraints. To this end, we propose a principled deep regression model that can be trained following a meta-learning style to predict the desired quantities with a high accuracy using scarce training data. We further introduce a uniquely designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is conducted to verify that necessary thermodynamic consistency conditions are maintained. Our evaluation results show an excellent fit of the EOS table and the predicted values are ready to use for important physics-related tasks.</abstract><cop>United States</cop><pub>IOP Publishing</pub><orcidid>https://orcid.org/0009000614043716</orcidid><orcidid>https://orcid.org/0000000288745503</orcidid><orcidid>https://orcid.org/0000000334456797</orcidid><orcidid>https://orcid.org/0000000204265407</orcidid><orcidid>https://orcid.org/0009000223734907</orcidid><orcidid>https://orcid.org/0000000324653818</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2632-2153
ispartof Machine learning: science and technology, 2024-02, Vol.5 (1)
issn 2632-2153
2632-2153
language eng
recordid cdi_osti_scitechconnect_2309795
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects equation-of-state
MATHEMATICS AND COMPUTING
meta-learning
uncertainty quantification
title Deep energy-pressure regression for a thermodynamically consistent EOS model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A23%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20energy-pressure%20regression%20for%20a%20thermodynamically%20consistent%20EOS%20model&rft.jtitle=Machine%20learning:%20science%20and%20technology&rft.au=Yu,%20Dayou&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States)&rft.date=2024-02-20&rft.volume=5&rft.issue=1&rft.issn=2632-2153&rft.eissn=2632-2153&rft_id=info:doi/&rft_dat=%3Costi%3E2309795%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true