Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry
Nanoporous materials are of great interest in many applications, such as catalysis, separation, and energy storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine through the conventional measurement of gas adsorption isotherms. Nuclear...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-03, Vol.136 (13), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 13 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 136 |
creator | Fricke, Sophia N. Salgado, Mia Menezes, Tamires Costa Santos, Kátilla M. Gallagher, Neal B. Song, Ah‐Young Wang, Jieyu Engler, Kaitlyn Wang, Yang Mao, Haiyan Reimer, Jeffrey A. |
description | Nanoporous materials are of great interest in many applications, such as catalysis, separation, and energy storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine through the conventional measurement of gas adsorption isotherms. Nuclear magnetic resonance (NMR) relaxometry has emerged as a technique highly sensitive to porosity in such materials. Nonetheless, streamlined methods to estimate pore size from NMR relaxometry remain elusive. Previous attempts have been hindered by inverting a time domain signal to relaxation rate distribution, and dealing with resulting parameters that vary in number, location, and magnitude. Here we invoke well‐established machine learning techniques to directly correlate time domain signals to BET surface areas for a set of metal‐organic frameworks (MOFs) imbibed with solvent at varied concentrations. We employ this series of MOFs to establish a correlation between NMR signal and surface area via partial least squares (PLS), following screening with principal component analysis, and apply the PLS model to predict surface area of various nanoporous materials. This approach offers a high‐throughput, non‐destructive way to assess porosity in c.a. one minute. We anticipate this work will contribute to the development of new materials with optimized pore sizes for various applications.
Machine learning allows rapid classification and prediction of the surface area (SA) of nanoporous materials through NMR relaxometry measurements of solvent imbibed in the porous network. Here, principal component analysis (PCA) screens “high” and “low” SA materials, and partial least squares (PLS) provides numerical estimates of SA. This non‐destructive technique can be used to help develop new materials with optimized porosity. |
doi_str_mv | 10.1002/ange.202316664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2309766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2958173096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1844-1439a47dbf0c3a86d185e8745d6d4e0374c050756e4f8e87cd9c2a3105c663423</originalsourceid><addsrcrecordid>eNqFkE1PAjEQhhujiYhePTd6Bvu17e6REEQTQEPk4Kmp3VkoWbbYFpV_7xKMHj3NYZ5n8s6L0DUlfUoIuzPNEvqMME6llOIEdWjGaI-rTJ2iDiFC9HIminN0EeOaECKZKjrodbqrk_swwZkEeGrsyjWAJ2BC45olnvoS6oh9hWem8dGaGvCzDz66tMdV8Bu8qFMwlYkJz6ZzPIfafPkNpLC_RGeVqSNc_cwuWtyPXoYPvcnT-HE4mPQszdtMVPDCCFW-VcRyk8uS5hnkSmSlLAUQroQlGVGZBFHl7cKWhWWGU5JZKblgvItujnd9TE5H6xLYlfVNAzZpxkmhWq6Lbo_QNvj3HcSk134XmjaXZkWWU9VyB6p_pGz7YQxQ6W1wGxP2mhJ96FgfOta_HbdCcRQ-XQ37f2g9mI1Hf-43zKx_Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2958173096</pqid></control><display><type>article</type><title>Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Fricke, Sophia N. ; Salgado, Mia ; Menezes, Tamires ; Costa Santos, Kátilla M. ; Gallagher, Neal B. ; Song, Ah‐Young ; Wang, Jieyu ; Engler, Kaitlyn ; Wang, Yang ; Mao, Haiyan ; Reimer, Jeffrey A.</creator><creatorcontrib>Fricke, Sophia N. ; Salgado, Mia ; Menezes, Tamires ; Costa Santos, Kátilla M. ; Gallagher, Neal B. ; Song, Ah‐Young ; Wang, Jieyu ; Engler, Kaitlyn ; Wang, Yang ; Mao, Haiyan ; Reimer, Jeffrey A.</creatorcontrib><description>Nanoporous materials are of great interest in many applications, such as catalysis, separation, and energy storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine through the conventional measurement of gas adsorption isotherms. Nuclear magnetic resonance (NMR) relaxometry has emerged as a technique highly sensitive to porosity in such materials. Nonetheless, streamlined methods to estimate pore size from NMR relaxometry remain elusive. Previous attempts have been hindered by inverting a time domain signal to relaxation rate distribution, and dealing with resulting parameters that vary in number, location, and magnitude. Here we invoke well‐established machine learning techniques to directly correlate time domain signals to BET surface areas for a set of metal‐organic frameworks (MOFs) imbibed with solvent at varied concentrations. We employ this series of MOFs to establish a correlation between NMR signal and surface area via partial least squares (PLS), following screening with principal component analysis, and apply the PLS model to predict surface area of various nanoporous materials. This approach offers a high‐throughput, non‐destructive way to assess porosity in c.a. one minute. We anticipate this work will contribute to the development of new materials with optimized pore sizes for various applications.
Machine learning allows rapid classification and prediction of the surface area (SA) of nanoporous materials through NMR relaxometry measurements of solvent imbibed in the porous network. Here, principal component analysis (PCA) screens “high” and “low” SA materials, and partial least squares (PLS) provides numerical estimates of SA. This non‐destructive technique can be used to help develop new materials with optimized porosity.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202316664</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Catalysts ; Energy storage ; Learning algorithms ; Machine learning ; Magnetic resonance ; Metal-organic frameworks ; Metals ; NMR ; NMR relaxometry ; Nuclear magnetic resonance ; Pore size ; Porosity ; porous materials ; Principal components analysis ; Surface area ; Time domain analysis</subject><ispartof>Angewandte Chemie, 2024-03, Vol.136 (13), p.n/a</ispartof><rights>2024 The Authors. Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1844-1439a47dbf0c3a86d185e8745d6d4e0374c050756e4f8e87cd9c2a3105c663423</cites><orcidid>0000-0002-0183-466X ; 000000020183466X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202316664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202316664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27902,27903,45552,45553</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2309766$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fricke, Sophia N.</creatorcontrib><creatorcontrib>Salgado, Mia</creatorcontrib><creatorcontrib>Menezes, Tamires</creatorcontrib><creatorcontrib>Costa Santos, Kátilla M.</creatorcontrib><creatorcontrib>Gallagher, Neal B.</creatorcontrib><creatorcontrib>Song, Ah‐Young</creatorcontrib><creatorcontrib>Wang, Jieyu</creatorcontrib><creatorcontrib>Engler, Kaitlyn</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Mao, Haiyan</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><title>Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry</title><title>Angewandte Chemie</title><description>Nanoporous materials are of great interest in many applications, such as catalysis, separation, and energy storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine through the conventional measurement of gas adsorption isotherms. Nuclear magnetic resonance (NMR) relaxometry has emerged as a technique highly sensitive to porosity in such materials. Nonetheless, streamlined methods to estimate pore size from NMR relaxometry remain elusive. Previous attempts have been hindered by inverting a time domain signal to relaxation rate distribution, and dealing with resulting parameters that vary in number, location, and magnitude. Here we invoke well‐established machine learning techniques to directly correlate time domain signals to BET surface areas for a set of metal‐organic frameworks (MOFs) imbibed with solvent at varied concentrations. We employ this series of MOFs to establish a correlation between NMR signal and surface area via partial least squares (PLS), following screening with principal component analysis, and apply the PLS model to predict surface area of various nanoporous materials. This approach offers a high‐throughput, non‐destructive way to assess porosity in c.a. one minute. We anticipate this work will contribute to the development of new materials with optimized pore sizes for various applications.
Machine learning allows rapid classification and prediction of the surface area (SA) of nanoporous materials through NMR relaxometry measurements of solvent imbibed in the porous network. Here, principal component analysis (PCA) screens “high” and “low” SA materials, and partial least squares (PLS) provides numerical estimates of SA. This non‐destructive technique can be used to help develop new materials with optimized porosity.</description><subject>Catalysis</subject><subject>Catalysts</subject><subject>Energy storage</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Magnetic resonance</subject><subject>Metal-organic frameworks</subject><subject>Metals</subject><subject>NMR</subject><subject>NMR relaxometry</subject><subject>Nuclear magnetic resonance</subject><subject>Pore size</subject><subject>Porosity</subject><subject>porous materials</subject><subject>Principal components analysis</subject><subject>Surface area</subject><subject>Time domain analysis</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkE1PAjEQhhujiYhePTd6Bvu17e6REEQTQEPk4Kmp3VkoWbbYFpV_7xKMHj3NYZ5n8s6L0DUlfUoIuzPNEvqMME6llOIEdWjGaI-rTJ2iDiFC9HIminN0EeOaECKZKjrodbqrk_swwZkEeGrsyjWAJ2BC45olnvoS6oh9hWem8dGaGvCzDz66tMdV8Bu8qFMwlYkJz6ZzPIfafPkNpLC_RGeVqSNc_cwuWtyPXoYPvcnT-HE4mPQszdtMVPDCCFW-VcRyk8uS5hnkSmSlLAUQroQlGVGZBFHl7cKWhWWGU5JZKblgvItujnd9TE5H6xLYlfVNAzZpxkmhWq6Lbo_QNvj3HcSk134XmjaXZkWWU9VyB6p_pGz7YQxQ6W1wGxP2mhJ96FgfOta_HbdCcRQ-XQ37f2g9mI1Hf-43zKx_Nw</recordid><startdate>20240322</startdate><enddate>20240322</enddate><creator>Fricke, Sophia N.</creator><creator>Salgado, Mia</creator><creator>Menezes, Tamires</creator><creator>Costa Santos, Kátilla M.</creator><creator>Gallagher, Neal B.</creator><creator>Song, Ah‐Young</creator><creator>Wang, Jieyu</creator><creator>Engler, Kaitlyn</creator><creator>Wang, Yang</creator><creator>Mao, Haiyan</creator><creator>Reimer, Jeffrey A.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley Blackwell (John Wiley & Sons)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-0183-466X</orcidid><orcidid>https://orcid.org/000000020183466X</orcidid></search><sort><creationdate>20240322</creationdate><title>Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry</title><author>Fricke, Sophia N. ; Salgado, Mia ; Menezes, Tamires ; Costa Santos, Kátilla M. ; Gallagher, Neal B. ; Song, Ah‐Young ; Wang, Jieyu ; Engler, Kaitlyn ; Wang, Yang ; Mao, Haiyan ; Reimer, Jeffrey A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1844-1439a47dbf0c3a86d185e8745d6d4e0374c050756e4f8e87cd9c2a3105c663423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Catalysis</topic><topic>Catalysts</topic><topic>Energy storage</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Magnetic resonance</topic><topic>Metal-organic frameworks</topic><topic>Metals</topic><topic>NMR</topic><topic>NMR relaxometry</topic><topic>Nuclear magnetic resonance</topic><topic>Pore size</topic><topic>Porosity</topic><topic>porous materials</topic><topic>Principal components analysis</topic><topic>Surface area</topic><topic>Time domain analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fricke, Sophia N.</creatorcontrib><creatorcontrib>Salgado, Mia</creatorcontrib><creatorcontrib>Menezes, Tamires</creatorcontrib><creatorcontrib>Costa Santos, Kátilla M.</creatorcontrib><creatorcontrib>Gallagher, Neal B.</creatorcontrib><creatorcontrib>Song, Ah‐Young</creatorcontrib><creatorcontrib>Wang, Jieyu</creatorcontrib><creatorcontrib>Engler, Kaitlyn</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>Mao, Haiyan</creatorcontrib><creatorcontrib>Reimer, Jeffrey A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fricke, Sophia N.</au><au>Salgado, Mia</au><au>Menezes, Tamires</au><au>Costa Santos, Kátilla M.</au><au>Gallagher, Neal B.</au><au>Song, Ah‐Young</au><au>Wang, Jieyu</au><au>Engler, Kaitlyn</au><au>Wang, Yang</au><au>Mao, Haiyan</au><au>Reimer, Jeffrey A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-03-22</date><risdate>2024</risdate><volume>136</volume><issue>13</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Nanoporous materials are of great interest in many applications, such as catalysis, separation, and energy storage. The performance of these materials is closely related to their pore sizes, which are inefficient to determine through the conventional measurement of gas adsorption isotherms. Nuclear magnetic resonance (NMR) relaxometry has emerged as a technique highly sensitive to porosity in such materials. Nonetheless, streamlined methods to estimate pore size from NMR relaxometry remain elusive. Previous attempts have been hindered by inverting a time domain signal to relaxation rate distribution, and dealing with resulting parameters that vary in number, location, and magnitude. Here we invoke well‐established machine learning techniques to directly correlate time domain signals to BET surface areas for a set of metal‐organic frameworks (MOFs) imbibed with solvent at varied concentrations. We employ this series of MOFs to establish a correlation between NMR signal and surface area via partial least squares (PLS), following screening with principal component analysis, and apply the PLS model to predict surface area of various nanoporous materials. This approach offers a high‐throughput, non‐destructive way to assess porosity in c.a. one minute. We anticipate this work will contribute to the development of new materials with optimized pore sizes for various applications.
Machine learning allows rapid classification and prediction of the surface area (SA) of nanoporous materials through NMR relaxometry measurements of solvent imbibed in the porous network. Here, principal component analysis (PCA) screens “high” and “low” SA materials, and partial least squares (PLS) provides numerical estimates of SA. This non‐destructive technique can be used to help develop new materials with optimized porosity.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202316664</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-0183-466X</orcidid><orcidid>https://orcid.org/000000020183466X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-03, Vol.136 (13), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_osti_scitechconnect_2309766 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Catalysts Energy storage Learning algorithms Machine learning Magnetic resonance Metal-organic frameworks Metals NMR NMR relaxometry Nuclear magnetic resonance Pore size Porosity porous materials Principal components analysis Surface area Time domain analysis |
title | Multivariate Machine Learning Models of Nanoscale Porosity from Ultrafast NMR Relaxometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multivariate%20Machine%20Learning%20Models%20of%20Nanoscale%20Porosity%20from%20Ultrafast%20NMR%20Relaxometry&rft.jtitle=Angewandte%20Chemie&rft.au=Fricke,%20Sophia%20N.&rft.date=2024-03-22&rft.volume=136&rft.issue=13&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202316664&rft_dat=%3Cproquest_osti_%3E2958173096%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2958173096&rft_id=info:pmid/&rfr_iscdi=true |