Non-Perturbative Superpotentials and Discrete Torsion

We discuss the non-perturbative superpotential in heterotic string theory on a non-simply connected Calabi–Yau manifold X , as well as on its simply connected covering space The superpotential is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of particles and nuclei 2018-09, Vol.49 (5), p.835-840
1. Verfasser: Buchbinder, E. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 840
container_issue 5
container_start_page 835
container_title Physics of particles and nuclei
container_volume 49
creator Buchbinder, E. I.
description We discuss the non-perturbative superpotential in heterotic string theory on a non-simply connected Calabi–Yau manifold X , as well as on its simply connected covering space The superpotential is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example, that the superpotential is non-zero both on and on X avoiding the no-go residue theorem of Beasley and Witten. On the non-simply connected manifold X , we explicitly compute the leading contribution to the superpotential from all holomorphic, isolated, genus zero curves with minimal area. The reason for the non-vanishing of the superpotental on X is that the second homology class contains a finite part called discrete torsion. As a result, the curves with the same area are distributed among different torsion classes and their contributions do not cancel each other.
doi_str_mv 10.1134/S1063779618050088
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22981791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1134_S1063779618050088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f23dd283e4cc4de781133a57e075405d4dd0562e7217d09faa3b0b3af2a713c63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuC59VMstlkj1L_QlGh9RzSZFZTNClJKvjtTak3wdMMvN8b5j1CzoFeAvDuagG051IOPSgqKFXqgExAcGiVEMNh3avc7vRjcpLzmlIAEGpCxFMM7Qumsk0rU_wXNovtBtMmFgzFm4_cmOCaG59twoLNMqbsYzglR2PV8Ox3Tsnr3e1y9tDOn-8fZ9fz1rJelXZk3DmmOHbWdg6lqq9yIyRSKToqXOccFT1DyUA6OozG8BVdcTMyI4Hbnk_Jxf5uzMXrbH1B-25jCGiLZmxQIAeoFOwpm2LOCUe9Sf7TpG8NVO_a0X_aqR629-TKhjdMeh23KdQw_5h-AK2vZcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-Perturbative Superpotentials and Discrete Torsion</title><source>SpringerLink Journals - AutoHoldings</source><creator>Buchbinder, E. I.</creator><creatorcontrib>Buchbinder, E. I.</creatorcontrib><description>We discuss the non-perturbative superpotential in heterotic string theory on a non-simply connected Calabi–Yau manifold X , as well as on its simply connected covering space The superpotential is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example, that the superpotential is non-zero both on and on X avoiding the no-go residue theorem of Beasley and Witten. On the non-simply connected manifold X , we explicitly compute the leading contribution to the superpotential from all holomorphic, isolated, genus zero curves with minimal area. The reason for the non-vanishing of the superpotental on X is that the second homology class contains a finite part called discrete torsion. As a result, the curves with the same area are distributed among different torsion classes and their contributions do not cancel each other.</description><identifier>ISSN: 1063-7796</identifier><identifier>EISSN: 1531-8559</identifier><identifier>DOI: 10.1134/S1063779618050088</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>MATHEMATICAL MANIFOLDS ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; POTENTIALS ; STRING THEORY ; TORSION</subject><ispartof>Physics of particles and nuclei, 2018-09, Vol.49 (5), p.835-840</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f23dd283e4cc4de781133a57e075405d4dd0562e7217d09faa3b0b3af2a713c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063779618050088$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063779618050088$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22981791$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Buchbinder, E. I.</creatorcontrib><title>Non-Perturbative Superpotentials and Discrete Torsion</title><title>Physics of particles and nuclei</title><addtitle>Phys. Part. Nuclei</addtitle><description>We discuss the non-perturbative superpotential in heterotic string theory on a non-simply connected Calabi–Yau manifold X , as well as on its simply connected covering space The superpotential is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example, that the superpotential is non-zero both on and on X avoiding the no-go residue theorem of Beasley and Witten. On the non-simply connected manifold X , we explicitly compute the leading contribution to the superpotential from all holomorphic, isolated, genus zero curves with minimal area. The reason for the non-vanishing of the superpotental on X is that the second homology class contains a finite part called discrete torsion. As a result, the curves with the same area are distributed among different torsion classes and their contributions do not cancel each other.</description><subject>MATHEMATICAL MANIFOLDS</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>POTENTIALS</subject><subject>STRING THEORY</subject><subject>TORSION</subject><issn>1063-7796</issn><issn>1531-8559</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuC59VMstlkj1L_QlGh9RzSZFZTNClJKvjtTak3wdMMvN8b5j1CzoFeAvDuagG051IOPSgqKFXqgExAcGiVEMNh3avc7vRjcpLzmlIAEGpCxFMM7Qumsk0rU_wXNovtBtMmFgzFm4_cmOCaG59twoLNMqbsYzglR2PV8Ox3Tsnr3e1y9tDOn-8fZ9fz1rJelXZk3DmmOHbWdg6lqq9yIyRSKToqXOccFT1DyUA6OozG8BVdcTMyI4Hbnk_Jxf5uzMXrbH1B-25jCGiLZmxQIAeoFOwpm2LOCUe9Sf7TpG8NVO_a0X_aqR629-TKhjdMeh23KdQw_5h-AK2vZcA</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Buchbinder, E. I.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20180901</creationdate><title>Non-Perturbative Superpotentials and Discrete Torsion</title><author>Buchbinder, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f23dd283e4cc4de781133a57e075405d4dd0562e7217d09faa3b0b3af2a713c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>MATHEMATICAL MANIFOLDS</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>POTENTIALS</topic><topic>STRING THEORY</topic><topic>TORSION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buchbinder, E. I.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physics of particles and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buchbinder, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-Perturbative Superpotentials and Discrete Torsion</atitle><jtitle>Physics of particles and nuclei</jtitle><stitle>Phys. Part. Nuclei</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>49</volume><issue>5</issue><spage>835</spage><epage>840</epage><pages>835-840</pages><issn>1063-7796</issn><eissn>1531-8559</eissn><abstract>We discuss the non-perturbative superpotential in heterotic string theory on a non-simply connected Calabi–Yau manifold X , as well as on its simply connected covering space The superpotential is induced by the string wrapping holomorphic, isolated, genus zero curves. We show, in a specific example, that the superpotential is non-zero both on and on X avoiding the no-go residue theorem of Beasley and Witten. On the non-simply connected manifold X , we explicitly compute the leading contribution to the superpotential from all holomorphic, isolated, genus zero curves with minimal area. The reason for the non-vanishing of the superpotental on X is that the second homology class contains a finite part called discrete torsion. As a result, the curves with the same area are distributed among different torsion classes and their contributions do not cancel each other.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063779618050088</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7796
ispartof Physics of particles and nuclei, 2018-09, Vol.49 (5), p.835-840
issn 1063-7796
1531-8559
language eng
recordid cdi_osti_scitechconnect_22981791
source SpringerLink Journals - AutoHoldings
subjects MATHEMATICAL MANIFOLDS
Particle and Nuclear Physics
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
POTENTIALS
STRING THEORY
TORSION
title Non-Perturbative Superpotentials and Discrete Torsion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A49%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-Perturbative%20Superpotentials%20and%20Discrete%20Torsion&rft.jtitle=Physics%20of%20particles%20and%20nuclei&rft.au=Buchbinder,%20E.%20I.&rft.date=2018-09-01&rft.volume=49&rft.issue=5&rft.spage=835&rft.epage=840&rft.pages=835-840&rft.issn=1063-7796&rft.eissn=1531-8559&rft_id=info:doi/10.1134/S1063779618050088&rft_dat=%3Ccrossref_osti_%3E10_1134_S1063779618050088%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true