Generation of microwave and terahertz radiation in a medium of nanoparticles
We investigate the mechanism of radiation generation, whose source are modulated with the variable ( x - υ t ) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction f < < 1 of...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2019-04, Vol.51 (4), p.1-26, Article 96 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Optical and quantum electronics |
container_volume | 51 |
creator | Sadykov, N. R. Aporoski, A. V. |
description | We investigate the mechanism of radiation generation, whose source are modulated with the variable
(
x
-
υ
t
)
surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction
f
<
<
1
of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents
υ
in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity
υ
. In the case of
α
-aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made. |
doi_str_mv | 10.1007/s11082-019-1811-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22950333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193658028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC52gmye5mj1L8BwUvCt5CNsnalG5Sk1TRT2_Kip6cyzDM7z1mHkLnQC6BkPYqARBBMYEOgwDA9ADNoG4pFtC-HKIZYaTBooPuGJ2ktCaENLwmM7S8s95GlV3wVRiq0ekYPtS7rZQ3VS6blY35q4rKuAlyvlLVaI3bjXuBVz5sVcxOb2w6RUeD2iR79tPn6Pn25mlxj5ePdw-L6yXWjPOMBbc9s8A0kEYMtK-toG1fJmO04YI2fOioMTXhvegb3sNgDBu0KnRja27YHF1MviFlJ5N22eqVDt5bnSWlXU1YqV9qG8PbzqYs12EXfTlMUuhYUwtCRaFgosrjKUU7yG10o4qfEojcRyunaGWJVu6jlbRo6KRJhfWvNv45_y_6Bk0Me38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193658028</pqid></control><display><type>article</type><title>Generation of microwave and terahertz radiation in a medium of nanoparticles</title><source>Springer Nature - Complete Springer Journals</source><creator>Sadykov, N. R. ; Aporoski, A. V.</creator><creatorcontrib>Sadykov, N. R. ; Aporoski, A. V.</creatorcontrib><description>We investigate the mechanism of radiation generation, whose source are modulated with the variable
(
x
-
υ
t
)
surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction
f
<
<
1
of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents
υ
in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity
υ
. In the case of
α
-aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-1811-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CARBON NANOTUBES ; Characterization and Evaluation of Materials ; CHERENKOV RADIATION ; Computer Communication Networks ; DIPOLES ; Electrical Engineering ; Elongated structure ; GRAPHENE ; Lasers ; MICROWAVE RADIATION ; NANOFILMS ; NANOPARTICLES ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical Devices ; Optics ; PHASE VELOCITY ; Photonics ; Physics ; Physics and Astronomy ; SURFACES ; TUNNEL EFFECT</subject><ispartof>Optical and quantum electronics, 2019-04, Vol.51 (4), p.1-26, Article 96</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</citedby><cites>FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</cites><orcidid>0000-0003-1381-249X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-019-1811-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-019-1811-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22950333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Aporoski, A. V.</creatorcontrib><title>Generation of microwave and terahertz radiation in a medium of nanoparticles</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>We investigate the mechanism of radiation generation, whose source are modulated with the variable
(
x
-
υ
t
)
surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction
f
<
<
1
of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents
υ
in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity
υ
. In the case of
α
-aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.</description><subject>CARBON NANOTUBES</subject><subject>Characterization and Evaluation of Materials</subject><subject>CHERENKOV RADIATION</subject><subject>Computer Communication Networks</subject><subject>DIPOLES</subject><subject>Electrical Engineering</subject><subject>Elongated structure</subject><subject>GRAPHENE</subject><subject>Lasers</subject><subject>MICROWAVE RADIATION</subject><subject>NANOFILMS</subject><subject>NANOPARTICLES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>PHASE VELOCITY</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>SURFACES</subject><subject>TUNNEL EFFECT</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC52gmye5mj1L8BwUvCt5CNsnalG5Sk1TRT2_Kip6cyzDM7z1mHkLnQC6BkPYqARBBMYEOgwDA9ADNoG4pFtC-HKIZYaTBooPuGJ2ktCaENLwmM7S8s95GlV3wVRiq0ekYPtS7rZQ3VS6blY35q4rKuAlyvlLVaI3bjXuBVz5sVcxOb2w6RUeD2iR79tPn6Pn25mlxj5ePdw-L6yXWjPOMBbc9s8A0kEYMtK-toG1fJmO04YI2fOioMTXhvegb3sNgDBu0KnRja27YHF1MviFlJ5N22eqVDt5bnSWlXU1YqV9qG8PbzqYs12EXfTlMUuhYUwtCRaFgosrjKUU7yG10o4qfEojcRyunaGWJVu6jlbRo6KRJhfWvNv45_y_6Bk0Me38</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sadykov, N. R.</creator><creator>Aporoski, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1381-249X</orcidid></search><sort><creationdate>20190401</creationdate><title>Generation of microwave and terahertz radiation in a medium of nanoparticles</title><author>Sadykov, N. R. ; Aporoski, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CARBON NANOTUBES</topic><topic>Characterization and Evaluation of Materials</topic><topic>CHERENKOV RADIATION</topic><topic>Computer Communication Networks</topic><topic>DIPOLES</topic><topic>Electrical Engineering</topic><topic>Elongated structure</topic><topic>GRAPHENE</topic><topic>Lasers</topic><topic>MICROWAVE RADIATION</topic><topic>NANOFILMS</topic><topic>NANOPARTICLES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>PHASE VELOCITY</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>SURFACES</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Aporoski, A. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadykov, N. R.</au><au>Aporoski, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of microwave and terahertz radiation in a medium of nanoparticles</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>96</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>We investigate the mechanism of radiation generation, whose source are modulated with the variable
(
x
-
υ
t
)
surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction
f
<
<
1
of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents
υ
in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity
υ
. In the case of
α
-aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-1811-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-1381-249X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2019-04, Vol.51 (4), p.1-26, Article 96 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_osti_scitechconnect_22950333 |
source | Springer Nature - Complete Springer Journals |
subjects | CARBON NANOTUBES Characterization and Evaluation of Materials CHERENKOV RADIATION Computer Communication Networks DIPOLES Electrical Engineering Elongated structure GRAPHENE Lasers MICROWAVE RADIATION NANOFILMS NANOPARTICLES NANOSCIENCE AND NANOTECHNOLOGY Optical Devices Optics PHASE VELOCITY Photonics Physics Physics and Astronomy SURFACES TUNNEL EFFECT |
title | Generation of microwave and terahertz radiation in a medium of nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20microwave%20and%20terahertz%20radiation%20in%20a%20medium%20of%20nanoparticles&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Sadykov,%20N.%20R.&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=96&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-1811-2&rft_dat=%3Cproquest_osti_%3E2193658028%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193658028&rft_id=info:pmid/&rfr_iscdi=true |