Generation of microwave and terahertz radiation in a medium of nanoparticles

We investigate the mechanism of radiation generation, whose source are modulated with the variable ( x - υ t ) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction f < < 1 of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2019-04, Vol.51 (4), p.1-26, Article 96
Hauptverfasser: Sadykov, N. R., Aporoski, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26
container_issue 4
container_start_page 1
container_title Optical and quantum electronics
container_volume 51
creator Sadykov, N. R.
Aporoski, A. V.
description We investigate the mechanism of radiation generation, whose source are modulated with the variable ( x - υ t ) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction f < < 1 of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents υ in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity υ . In the case of α -aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.
doi_str_mv 10.1007/s11082-019-1811-2
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22950333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2193658028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuC52gmye5mj1L8BwUvCt5CNsnalG5Sk1TRT2_Kip6cyzDM7z1mHkLnQC6BkPYqARBBMYEOgwDA9ADNoG4pFtC-HKIZYaTBooPuGJ2ktCaENLwmM7S8s95GlV3wVRiq0ekYPtS7rZQ3VS6blY35q4rKuAlyvlLVaI3bjXuBVz5sVcxOb2w6RUeD2iR79tPn6Pn25mlxj5ePdw-L6yXWjPOMBbc9s8A0kEYMtK-toG1fJmO04YI2fOioMTXhvegb3sNgDBu0KnRja27YHF1MviFlJ5N22eqVDt5bnSWlXU1YqV9qG8PbzqYs12EXfTlMUuhYUwtCRaFgosrjKUU7yG10o4qfEojcRyunaGWJVu6jlbRo6KRJhfWvNv45_y_6Bk0Me38</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2193658028</pqid></control><display><type>article</type><title>Generation of microwave and terahertz radiation in a medium of nanoparticles</title><source>Springer Nature - Complete Springer Journals</source><creator>Sadykov, N. R. ; Aporoski, A. V.</creator><creatorcontrib>Sadykov, N. R. ; Aporoski, A. V.</creatorcontrib><description>We investigate the mechanism of radiation generation, whose source are modulated with the variable ( x - υ t ) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction f &lt; &lt; 1 of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents υ in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity υ . In the case of α -aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-1811-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CARBON NANOTUBES ; Characterization and Evaluation of Materials ; CHERENKOV RADIATION ; Computer Communication Networks ; DIPOLES ; Electrical Engineering ; Elongated structure ; GRAPHENE ; Lasers ; MICROWAVE RADIATION ; NANOFILMS ; NANOPARTICLES ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical Devices ; Optics ; PHASE VELOCITY ; Photonics ; Physics ; Physics and Astronomy ; SURFACES ; TUNNEL EFFECT</subject><ispartof>Optical and quantum electronics, 2019-04, Vol.51 (4), p.1-26, Article 96</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</citedby><cites>FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</cites><orcidid>0000-0003-1381-249X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-019-1811-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-019-1811-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22950333$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Aporoski, A. V.</creatorcontrib><title>Generation of microwave and terahertz radiation in a medium of nanoparticles</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>We investigate the mechanism of radiation generation, whose source are modulated with the variable ( x - υ t ) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction f &lt; &lt; 1 of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents υ in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity υ . In the case of α -aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.</description><subject>CARBON NANOTUBES</subject><subject>Characterization and Evaluation of Materials</subject><subject>CHERENKOV RADIATION</subject><subject>Computer Communication Networks</subject><subject>DIPOLES</subject><subject>Electrical Engineering</subject><subject>Elongated structure</subject><subject>GRAPHENE</subject><subject>Lasers</subject><subject>MICROWAVE RADIATION</subject><subject>NANOFILMS</subject><subject>NANOPARTICLES</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>PHASE VELOCITY</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>SURFACES</subject><subject>TUNNEL EFFECT</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuC52gmye5mj1L8BwUvCt5CNsnalG5Sk1TRT2_Kip6cyzDM7z1mHkLnQC6BkPYqARBBMYEOgwDA9ADNoG4pFtC-HKIZYaTBooPuGJ2ktCaENLwmM7S8s95GlV3wVRiq0ekYPtS7rZQ3VS6blY35q4rKuAlyvlLVaI3bjXuBVz5sVcxOb2w6RUeD2iR79tPn6Pn25mlxj5ePdw-L6yXWjPOMBbc9s8A0kEYMtK-toG1fJmO04YI2fOioMTXhvegb3sNgDBu0KnRja27YHF1MviFlJ5N22eqVDt5bnSWlXU1YqV9qG8PbzqYs12EXfTlMUuhYUwtCRaFgosrjKUU7yG10o4qfEojcRyunaGWJVu6jlbRo6KRJhfWvNv45_y_6Bk0Me38</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Sadykov, N. R.</creator><creator>Aporoski, A. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1381-249X</orcidid></search><sort><creationdate>20190401</creationdate><title>Generation of microwave and terahertz radiation in a medium of nanoparticles</title><author>Sadykov, N. R. ; Aporoski, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-84eb3e13c1068f2b5e827bc10ddcd48264f92dd504b8b64b1fdd3fca0686e54d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CARBON NANOTUBES</topic><topic>Characterization and Evaluation of Materials</topic><topic>CHERENKOV RADIATION</topic><topic>Computer Communication Networks</topic><topic>DIPOLES</topic><topic>Electrical Engineering</topic><topic>Elongated structure</topic><topic>GRAPHENE</topic><topic>Lasers</topic><topic>MICROWAVE RADIATION</topic><topic>NANOFILMS</topic><topic>NANOPARTICLES</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>PHASE VELOCITY</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>SURFACES</topic><topic>TUNNEL EFFECT</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadykov, N. R.</creatorcontrib><creatorcontrib>Aporoski, A. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadykov, N. R.</au><au>Aporoski, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of microwave and terahertz radiation in a medium of nanoparticles</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>51</volume><issue>4</issue><spage>1</spage><epage>26</epage><pages>1-26</pages><artnum>96</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>We investigate the mechanism of radiation generation, whose source are modulated with the variable ( x - υ t ) surface currents in elongated nanoparticles forming a 3D structure. Carbon nanotubes and graphene nanoribbons are considered as elongated nanoparticles. The volume fraction f &lt; &lt; 1 of nanoparticles is considered small (the distance between the centers of nanoparticles is several times greater than their length), thus allowing one to neglect the interaction of two identical nanotubes due to the tunneling effect. Since the velocity of modulated surface currents υ in 3D structure greater than the phase velocity of the light in a medium, then the process is qualitatively similar to the Cherenkov radiation by a system of dipoles that move with the velocity υ . In the case of α -aligned nanofilms based on nanotubes, the radiation wavefront will have a form of a divergent wedge. It is shown that such a structure can generate intense microwave and terahertz radiation and an estimate of the radiation value is made.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-1811-2</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0003-1381-249X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2019-04, Vol.51 (4), p.1-26, Article 96
issn 0306-8919
1572-817X
language eng
recordid cdi_osti_scitechconnect_22950333
source Springer Nature - Complete Springer Journals
subjects CARBON NANOTUBES
Characterization and Evaluation of Materials
CHERENKOV RADIATION
Computer Communication Networks
DIPOLES
Electrical Engineering
Elongated structure
GRAPHENE
Lasers
MICROWAVE RADIATION
NANOFILMS
NANOPARTICLES
NANOSCIENCE AND NANOTECHNOLOGY
Optical Devices
Optics
PHASE VELOCITY
Photonics
Physics
Physics and Astronomy
SURFACES
TUNNEL EFFECT
title Generation of microwave and terahertz radiation in a medium of nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A59%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20microwave%20and%20terahertz%20radiation%20in%20a%20medium%20of%20nanoparticles&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Sadykov,%20N.%20R.&rft.date=2019-04-01&rft.volume=51&rft.issue=4&rft.spage=1&rft.epage=26&rft.pages=1-26&rft.artnum=96&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-1811-2&rft_dat=%3Cproquest_osti_%3E2193658028%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2193658028&rft_id=info:pmid/&rfr_iscdi=true