Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice

Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of inf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optical and quantum electronics 2019-09, Vol.51 (9), p.1-14, Article 311
Hauptverfasser: Sellami, Khouloud, Ketata, Hassiba, Ben Ghozlen, Mohamed Hedi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 9
container_start_page 1
container_title Optical and quantum electronics
container_volume 51
creator Sellami, Khouloud
Ketata, Hassiba
Ben Ghozlen, Mohamed Hedi
description Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.
doi_str_mv 10.1007/s11082-019-2028-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22950123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288804862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</originalsourceid><addsrcrecordid>eNp1kT1rHDEQQEWIwRfHP8CdILWSkbSr1ZbB5AsO0iSQTsxqtXcya-ms0WGuzD-Pjgu4CKmmeW-G4TF2J-G9BBg-kJRglQA5CgXKCnjFNrIflLBy-PWabUCDEXaU4zV7Q_QAAKbrYcN-b7PHdT3xEignTJUf9jnlFD335UQVV-ITplns8MAx4XqiSDwnjrw-Zz7Hx5AoNnP9R-TPse4bR09HLKHJ81kqEdPuuGLhK9YafXjLrpZ2Jdz-nTfs5-dPP-6_iu33L9_uP26F111XxTxJCHbql2WwOAwLDv2IndfWSD0bNetOBYXKmEX3oDqYOjMaO0-jkdPca9Q37N1lb6YaHflYg9_7nFLw1Sk19iCVfqEOJT8dA1X3kI-lvUeNsdZCZ41qlLxQvmSiEhZ3KPERy8lJcOce7tLDtR7u3MNBc9TFocamXSgvm_8v_QGzco6t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288804862</pqid></control><display><type>article</type><title>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sellami, Khouloud ; Ketata, Hassiba ; Ben Ghozlen, Mohamed Hedi</creator><creatorcontrib>Sellami, Khouloud ; Ketata, Hassiba ; Ben Ghozlen, Mohamed Hedi</creatorcontrib><description>Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-2028-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>BESSEL FUNCTIONS ; CARBON ; Characterization and Evaluation of Materials ; COATINGS ; Computer Communication Networks ; Crystal lattices ; Crystal structure ; CRYSTALS ; CYLINDERS ; Electrical Engineering ; FREQUENCY RANGE ; Frequency ranges ; Lasers ; LAYERS ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical Devices ; Optics ; Personal computers ; Photonics ; Physics ; Physics and Astronomy ; Plane waves ; RESONANCE ; Rubber ; RUBBERS ; Thickness ratio ; Two dimensional analysis ; TWO-DIMENSIONAL SYSTEMS ; WAVE PROPAGATION</subject><ispartof>Optical and quantum electronics, 2019-09, Vol.51 (9), p.1-14, Article 311</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</citedby><cites>FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</cites><orcidid>0000-0003-3609-6887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-019-2028-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-019-2028-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22950123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sellami, Khouloud</creatorcontrib><creatorcontrib>Ketata, Hassiba</creatorcontrib><creatorcontrib>Ben Ghozlen, Mohamed Hedi</creatorcontrib><title>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.</description><subject>BESSEL FUNCTIONS</subject><subject>CARBON</subject><subject>Characterization and Evaluation of Materials</subject><subject>COATINGS</subject><subject>Computer Communication Networks</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>CRYSTALS</subject><subject>CYLINDERS</subject><subject>Electrical Engineering</subject><subject>FREQUENCY RANGE</subject><subject>Frequency ranges</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Personal computers</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plane waves</subject><subject>RESONANCE</subject><subject>Rubber</subject><subject>RUBBERS</subject><subject>Thickness ratio</subject><subject>Two dimensional analysis</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><subject>WAVE PROPAGATION</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kT1rHDEQQEWIwRfHP8CdILWSkbSr1ZbB5AsO0iSQTsxqtXcya-ms0WGuzD-Pjgu4CKmmeW-G4TF2J-G9BBg-kJRglQA5CgXKCnjFNrIflLBy-PWabUCDEXaU4zV7Q_QAAKbrYcN-b7PHdT3xEignTJUf9jnlFD335UQVV-ITplns8MAx4XqiSDwnjrw-Zz7Hx5AoNnP9R-TPse4bR09HLKHJ81kqEdPuuGLhK9YafXjLrpZ2Jdz-nTfs5-dPP-6_iu33L9_uP26F111XxTxJCHbql2WwOAwLDv2IndfWSD0bNetOBYXKmEX3oDqYOjMaO0-jkdPca9Q37N1lb6YaHflYg9_7nFLw1Sk19iCVfqEOJT8dA1X3kI-lvUeNsdZCZ41qlLxQvmSiEhZ3KPERy8lJcOce7tLDtR7u3MNBc9TFocamXSgvm_8v_QGzco6t</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Sellami, Khouloud</creator><creator>Ketata, Hassiba</creator><creator>Ben Ghozlen, Mohamed Hedi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3609-6887</orcidid></search><sort><creationdate>20190901</creationdate><title>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</title><author>Sellami, Khouloud ; Ketata, Hassiba ; Ben Ghozlen, Mohamed Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BESSEL FUNCTIONS</topic><topic>CARBON</topic><topic>Characterization and Evaluation of Materials</topic><topic>COATINGS</topic><topic>Computer Communication Networks</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>CRYSTALS</topic><topic>CYLINDERS</topic><topic>Electrical Engineering</topic><topic>FREQUENCY RANGE</topic><topic>Frequency ranges</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Personal computers</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plane waves</topic><topic>RESONANCE</topic><topic>Rubber</topic><topic>RUBBERS</topic><topic>Thickness ratio</topic><topic>Two dimensional analysis</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sellami, Khouloud</creatorcontrib><creatorcontrib>Ketata, Hassiba</creatorcontrib><creatorcontrib>Ben Ghozlen, Mohamed Hedi</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellami, Khouloud</au><au>Ketata, Hassiba</au><au>Ben Ghozlen, Mohamed Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>51</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>311</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-2028-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3609-6887</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2019-09, Vol.51 (9), p.1-14, Article 311
issn 0306-8919
1572-817X
language eng
recordid cdi_osti_scitechconnect_22950123
source SpringerLink Journals - AutoHoldings
subjects BESSEL FUNCTIONS
CARBON
Characterization and Evaluation of Materials
COATINGS
Computer Communication Networks
Crystal lattices
Crystal structure
CRYSTALS
CYLINDERS
Electrical Engineering
FREQUENCY RANGE
Frequency ranges
Lasers
LAYERS
NANOSCIENCE AND NANOTECHNOLOGY
Optical Devices
Optics
Personal computers
Photonics
Physics
Physics and Astronomy
Plane waves
RESONANCE
Rubber
RUBBERS
Thickness ratio
Two dimensional analysis
TWO-DIMENSIONAL SYSTEMS
WAVE PROPAGATION
title Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20resonant%20phononic%20crystals%20band-gap%20analysis%20on%20a%20two%20dimensional%20phononic%20crystal%20with%20a%20square%20and%20a%20triangular%20lattice&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Sellami,%20Khouloud&rft.date=2019-09-01&rft.volume=51&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=311&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-2028-0&rft_dat=%3Cproquest_osti_%3E2288804862%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288804862&rft_id=info:pmid/&rfr_iscdi=true