Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice
Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of inf...
Gespeichert in:
Veröffentlicht in: | Optical and quantum electronics 2019-09, Vol.51 (9), p.1-14, Article 311 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 9 |
container_start_page | 1 |
container_title | Optical and quantum electronics |
container_volume | 51 |
creator | Sellami, Khouloud Ketata, Hassiba Ben Ghozlen, Mohamed Hedi |
description | Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders. |
doi_str_mv | 10.1007/s11082-019-2028-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22950123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2288804862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</originalsourceid><addsrcrecordid>eNp1kT1rHDEQQEWIwRfHP8CdILWSkbSr1ZbB5AsO0iSQTsxqtXcya-ms0WGuzD-Pjgu4CKmmeW-G4TF2J-G9BBg-kJRglQA5CgXKCnjFNrIflLBy-PWabUCDEXaU4zV7Q_QAAKbrYcN-b7PHdT3xEignTJUf9jnlFD335UQVV-ITplns8MAx4XqiSDwnjrw-Zz7Hx5AoNnP9R-TPse4bR09HLKHJ81kqEdPuuGLhK9YafXjLrpZ2Jdz-nTfs5-dPP-6_iu33L9_uP26F111XxTxJCHbql2WwOAwLDv2IndfWSD0bNetOBYXKmEX3oDqYOjMaO0-jkdPca9Q37N1lb6YaHflYg9_7nFLw1Sk19iCVfqEOJT8dA1X3kI-lvUeNsdZCZ41qlLxQvmSiEhZ3KPERy8lJcOce7tLDtR7u3MNBc9TFocamXSgvm_8v_QGzco6t</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2288804862</pqid></control><display><type>article</type><title>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Sellami, Khouloud ; Ketata, Hassiba ; Ben Ghozlen, Mohamed Hedi</creator><creatorcontrib>Sellami, Khouloud ; Ketata, Hassiba ; Ben Ghozlen, Mohamed Hedi</creatorcontrib><description>Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-019-2028-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>BESSEL FUNCTIONS ; CARBON ; Characterization and Evaluation of Materials ; COATINGS ; Computer Communication Networks ; Crystal lattices ; Crystal structure ; CRYSTALS ; CYLINDERS ; Electrical Engineering ; FREQUENCY RANGE ; Frequency ranges ; Lasers ; LAYERS ; NANOSCIENCE AND NANOTECHNOLOGY ; Optical Devices ; Optics ; Personal computers ; Photonics ; Physics ; Physics and Astronomy ; Plane waves ; RESONANCE ; Rubber ; RUBBERS ; Thickness ratio ; Two dimensional analysis ; TWO-DIMENSIONAL SYSTEMS ; WAVE PROPAGATION</subject><ispartof>Optical and quantum electronics, 2019-09, Vol.51 (9), p.1-14, Article 311</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</citedby><cites>FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</cites><orcidid>0000-0003-3609-6887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11082-019-2028-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11082-019-2028-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22950123$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sellami, Khouloud</creatorcontrib><creatorcontrib>Ketata, Hassiba</creatorcontrib><creatorcontrib>Ben Ghozlen, Mohamed Hedi</creatorcontrib><title>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.</description><subject>BESSEL FUNCTIONS</subject><subject>CARBON</subject><subject>Characterization and Evaluation of Materials</subject><subject>COATINGS</subject><subject>Computer Communication Networks</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>CRYSTALS</subject><subject>CYLINDERS</subject><subject>Electrical Engineering</subject><subject>FREQUENCY RANGE</subject><subject>Frequency ranges</subject><subject>Lasers</subject><subject>LAYERS</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Personal computers</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Plane waves</subject><subject>RESONANCE</subject><subject>Rubber</subject><subject>RUBBERS</subject><subject>Thickness ratio</subject><subject>Two dimensional analysis</subject><subject>TWO-DIMENSIONAL SYSTEMS</subject><subject>WAVE PROPAGATION</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kT1rHDEQQEWIwRfHP8CdILWSkbSr1ZbB5AsO0iSQTsxqtXcya-ms0WGuzD-Pjgu4CKmmeW-G4TF2J-G9BBg-kJRglQA5CgXKCnjFNrIflLBy-PWabUCDEXaU4zV7Q_QAAKbrYcN-b7PHdT3xEignTJUf9jnlFD335UQVV-ITplns8MAx4XqiSDwnjrw-Zz7Hx5AoNnP9R-TPse4bR09HLKHJ81kqEdPuuGLhK9YafXjLrpZ2Jdz-nTfs5-dPP-6_iu33L9_uP26F111XxTxJCHbql2WwOAwLDv2IndfWSD0bNetOBYXKmEX3oDqYOjMaO0-jkdPca9Q37N1lb6YaHflYg9_7nFLw1Sk19iCVfqEOJT8dA1X3kI-lvUeNsdZCZ41qlLxQvmSiEhZ3KPERy8lJcOce7tLDtR7u3MNBc9TFocamXSgvm_8v_QGzco6t</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Sellami, Khouloud</creator><creator>Ketata, Hassiba</creator><creator>Ben Ghozlen, Mohamed Hedi</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3609-6887</orcidid></search><sort><creationdate>20190901</creationdate><title>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</title><author>Sellami, Khouloud ; Ketata, Hassiba ; Ben Ghozlen, Mohamed Hedi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-db10e8b5ff78a77fa759a4c38613d62d342e2a266f350240b46968db961bd53a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BESSEL FUNCTIONS</topic><topic>CARBON</topic><topic>Characterization and Evaluation of Materials</topic><topic>COATINGS</topic><topic>Computer Communication Networks</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>CRYSTALS</topic><topic>CYLINDERS</topic><topic>Electrical Engineering</topic><topic>FREQUENCY RANGE</topic><topic>Frequency ranges</topic><topic>Lasers</topic><topic>LAYERS</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Personal computers</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Plane waves</topic><topic>RESONANCE</topic><topic>Rubber</topic><topic>RUBBERS</topic><topic>Thickness ratio</topic><topic>Two dimensional analysis</topic><topic>TWO-DIMENSIONAL SYSTEMS</topic><topic>WAVE PROPAGATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sellami, Khouloud</creatorcontrib><creatorcontrib>Ketata, Hassiba</creatorcontrib><creatorcontrib>Ben Ghozlen, Mohamed Hedi</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sellami, Khouloud</au><au>Ketata, Hassiba</au><au>Ben Ghozlen, Mohamed Hedi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>51</volume><issue>9</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>311</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>Locally resonant phononic crystals (LRPC) are a new type of sound insulating material. Using the plane wave expansion method based on the Bloch theorem, we compute the band structure of two dimensional (2D) phononic crystals (PC) with square and triangular lattices. Such PC typically consists of infinitely long carbon rods coated with silicon rubber and embedded in an elastic background. Computational results show that gaps appear at the lower frequency range, which are lower than those expected from the Bragg mechanism. Those gaps are generated due to local resonances; the optimum gap is obtained by tuning the thickness ratio of the coating layer. The gap created by the LRPC depends on the filling fraction of the coating cylinders.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-019-2028-0</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3609-6887</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0306-8919 |
ispartof | Optical and quantum electronics, 2019-09, Vol.51 (9), p.1-14, Article 311 |
issn | 0306-8919 1572-817X |
language | eng |
recordid | cdi_osti_scitechconnect_22950123 |
source | SpringerLink Journals - AutoHoldings |
subjects | BESSEL FUNCTIONS CARBON Characterization and Evaluation of Materials COATINGS Computer Communication Networks Crystal lattices Crystal structure CRYSTALS CYLINDERS Electrical Engineering FREQUENCY RANGE Frequency ranges Lasers LAYERS NANOSCIENCE AND NANOTECHNOLOGY Optical Devices Optics Personal computers Photonics Physics Physics and Astronomy Plane waves RESONANCE Rubber RUBBERS Thickness ratio Two dimensional analysis TWO-DIMENSIONAL SYSTEMS WAVE PROPAGATION |
title | Locally resonant phononic crystals band-gap analysis on a two dimensional phononic crystal with a square and a triangular lattice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20resonant%20phononic%20crystals%20band-gap%20analysis%20on%20a%20two%20dimensional%20phononic%20crystal%20with%20a%20square%20and%20a%20triangular%20lattice&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Sellami,%20Khouloud&rft.date=2019-09-01&rft.volume=51&rft.issue=9&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=311&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-019-2028-0&rft_dat=%3Cproquest_osti_%3E2288804862%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2288804862&rft_id=info:pmid/&rfr_iscdi=true |