Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions
Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH 4 ) 2 S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) su...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2019-07, Vol.53 (7), p.892-900 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 900 |
---|---|
container_issue | 7 |
container_start_page | 892 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 53 |
creator | Lebedev, M. V. Lvova, T. V. Shakhmin, A. L. Rakhimova, O. V. Dementev, P. A. Sedova, I. V. |
description | Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH
4
)
2
S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH
4
)
2
S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH
4
)
2
S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min. |
doi_str_mv | 10.1134/S1063782619070169 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22944940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592081830</galeid><sourcerecordid>A592081830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQQE1oINukP6A3Qy_twYlGH7Z0XLZpUlhIYJOzkeVRVsGWtpIcyL-vzbbsoRQdRsy8NwwzRfEZyDUA4zc7IDVrJK1BkYZArc6KFRBFqpo36sPyr1m11C-Kjym9EgIgBV8V_Xd8wyEcRvS5DLbMeywf9-_JmWD2ODqjh_IxhgPG7DD9Je70rvsKhHwrd1O02mDpfLkex-DdNM65wboey10YpuyCT1fFudVDwk9_4mXx_OP2aXNfbR_ufm7W28pwSnJFGxC97oSVnemYpcAssyAYQ8atgp6ohjHb90pqiVYqqwSnlBopmOpY17HL4suxb0jZtcm4jGZvgvdockup4lxxcqIOMfyaMOX2NUzRz4PNjJj3Akos1PWRetEDts7bkKM28-uXrQSP1s35tVCUSJBsEeAomBhSimjbQ3Sjju8tkHa5UfvPjWaHHp00s_4F42mU_0u_ATMDkSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251181950</pqid></control><display><type>article</type><title>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</title><source>SpringerLINK Journals</source><creator>Lebedev, M. V. ; Lvova, T. V. ; Shakhmin, A. L. ; Rakhimova, O. V. ; Dementev, P. A. ; Sedova, I. V.</creator><creatorcontrib>Lebedev, M. V. ; Lvova, T. V. ; Shakhmin, A. L. ; Rakhimova, O. V. ; Dementev, P. A. ; Sedova, I. V.</creatorcontrib><description>Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH
4
)
2
S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH
4
)
2
S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH
4
)
2
S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782619070169</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>AMMONIUM COMPOUNDS ; Ammonium sulfides ; ANTIMONY ; ANTIMONY SULFIDES ; Atomic beam spectroscopy ; ATOMIC FORCE MICROSCOPY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; FERMI LEVEL ; GALLIUM ANTIMONIDES ; GALLIUM OXIDES ; GALLIUM SULFIDES ; Interfaces ; LEAKAGE CURRENT ; Magnetic Materials ; Magnetism ; PASSIVATION ; Photoelectrons ; Physics ; Physics and Astronomy ; PROPANOLS ; ROUGHNESS ; SEMICONDUCTOR MATERIALS ; SOLVENTS ; STOICHIOMETRY ; Sulfides ; Surfaces ; Thin Films ; X-ray spectroscopy</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.892-900</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</citedby><cites>FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782619070169$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782619070169$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22944940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebedev, M. V.</creatorcontrib><creatorcontrib>Lvova, T. V.</creatorcontrib><creatorcontrib>Shakhmin, A. L.</creatorcontrib><creatorcontrib>Rakhimova, O. V.</creatorcontrib><creatorcontrib>Dementev, P. A.</creatorcontrib><creatorcontrib>Sedova, I. V.</creatorcontrib><title>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH
4
)
2
S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH
4
)
2
S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH
4
)
2
S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.</description><subject>AMMONIUM COMPOUNDS</subject><subject>Ammonium sulfides</subject><subject>ANTIMONY</subject><subject>ANTIMONY SULFIDES</subject><subject>Atomic beam spectroscopy</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>FERMI LEVEL</subject><subject>GALLIUM ANTIMONIDES</subject><subject>GALLIUM OXIDES</subject><subject>GALLIUM SULFIDES</subject><subject>Interfaces</subject><subject>LEAKAGE CURRENT</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>PASSIVATION</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PROPANOLS</subject><subject>ROUGHNESS</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SOLVENTS</subject><subject>STOICHIOMETRY</subject><subject>Sulfides</subject><subject>Surfaces</subject><subject>Thin Films</subject><subject>X-ray spectroscopy</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQQE1oINukP6A3Qy_twYlGH7Z0XLZpUlhIYJOzkeVRVsGWtpIcyL-vzbbsoRQdRsy8NwwzRfEZyDUA4zc7IDVrJK1BkYZArc6KFRBFqpo36sPyr1m11C-Kjym9EgIgBV8V_Xd8wyEcRvS5DLbMeywf9-_JmWD2ODqjh_IxhgPG7DD9Je70rvsKhHwrd1O02mDpfLkex-DdNM65wboey10YpuyCT1fFudVDwk9_4mXx_OP2aXNfbR_ufm7W28pwSnJFGxC97oSVnemYpcAssyAYQ8atgp6ohjHb90pqiVYqqwSnlBopmOpY17HL4suxb0jZtcm4jGZvgvdockup4lxxcqIOMfyaMOX2NUzRz4PNjJj3Akos1PWRetEDts7bkKM28-uXrQSP1s35tVCUSJBsEeAomBhSimjbQ3Sjju8tkHa5UfvPjWaHHp00s_4F42mU_0u_ATMDkSs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lebedev, M. V.</creator><creator>Lvova, T. V.</creator><creator>Shakhmin, A. L.</creator><creator>Rakhimova, O. V.</creator><creator>Dementev, P. A.</creator><creator>Sedova, I. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190701</creationdate><title>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</title><author>Lebedev, M. V. ; Lvova, T. V. ; Shakhmin, A. L. ; Rakhimova, O. V. ; Dementev, P. A. ; Sedova, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AMMONIUM COMPOUNDS</topic><topic>Ammonium sulfides</topic><topic>ANTIMONY</topic><topic>ANTIMONY SULFIDES</topic><topic>Atomic beam spectroscopy</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>FERMI LEVEL</topic><topic>GALLIUM ANTIMONIDES</topic><topic>GALLIUM OXIDES</topic><topic>GALLIUM SULFIDES</topic><topic>Interfaces</topic><topic>LEAKAGE CURRENT</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>PASSIVATION</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PROPANOLS</topic><topic>ROUGHNESS</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SOLVENTS</topic><topic>STOICHIOMETRY</topic><topic>Sulfides</topic><topic>Surfaces</topic><topic>Thin Films</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebedev, M. V.</creatorcontrib><creatorcontrib>Lvova, T. V.</creatorcontrib><creatorcontrib>Shakhmin, A. L.</creatorcontrib><creatorcontrib>Rakhimova, O. V.</creatorcontrib><creatorcontrib>Dementev, P. A.</creatorcontrib><creatorcontrib>Sedova, I. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebedev, M. V.</au><au>Lvova, T. V.</au><au>Shakhmin, A. L.</au><au>Rakhimova, O. V.</au><au>Dementev, P. A.</au><au>Sedova, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>53</volume><issue>7</issue><spage>892</spage><epage>900</epage><pages>892-900</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH
4
)
2
S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH
4
)
2
S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH
4
)
2
S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782619070169</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.892-900 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_22944940 |
source | SpringerLINK Journals |
subjects | AMMONIUM COMPOUNDS Ammonium sulfides ANTIMONY ANTIMONY SULFIDES Atomic beam spectroscopy ATOMIC FORCE MICROSCOPY CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY FERMI LEVEL GALLIUM ANTIMONIDES GALLIUM OXIDES GALLIUM SULFIDES Interfaces LEAKAGE CURRENT Magnetic Materials Magnetism PASSIVATION Photoelectrons Physics Physics and Astronomy PROPANOLS ROUGHNESS SEMICONDUCTOR MATERIALS SOLVENTS STOICHIOMETRY Sulfides Surfaces Thin Films X-ray spectroscopy |
title | Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20Physicochemical%20Properties%20of%20the%20GaSb(100)%20Surface%20in%20Ammonium%20Sulfide%20Solutions&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Lebedev,%20M.%20V.&rft.date=2019-07-01&rft.volume=53&rft.issue=7&rft.spage=892&rft.epage=900&rft.pages=892-900&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782619070169&rft_dat=%3Cgale_osti_%3EA592081830%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251181950&rft_id=info:pmid/&rft_galeid=A592081830&rfr_iscdi=true |