Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions

Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH 4 ) 2 S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2019-07, Vol.53 (7), p.892-900
Hauptverfasser: Lebedev, M. V., Lvova, T. V., Shakhmin, A. L., Rakhimova, O. V., Dementev, P. A., Sedova, I. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 900
container_issue 7
container_start_page 892
container_title Semiconductors (Woodbury, N.Y.)
container_volume 53
creator Lebedev, M. V.
Lvova, T. V.
Shakhmin, A. L.
Rakhimova, O. V.
Dementev, P. A.
Sedova, I. V.
description Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH 4 ) 2 S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH 4 ) 2 S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH 4 ) 2 S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.
doi_str_mv 10.1134/S1063782619070169
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22944940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592081830</galeid><sourcerecordid>A592081830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</originalsourceid><addsrcrecordid>eNp1kU1r3DAQQE1oINukP6A3Qy_twYlGH7Z0XLZpUlhIYJOzkeVRVsGWtpIcyL-vzbbsoRQdRsy8NwwzRfEZyDUA4zc7IDVrJK1BkYZArc6KFRBFqpo36sPyr1m11C-Kjym9EgIgBV8V_Xd8wyEcRvS5DLbMeywf9-_JmWD2ODqjh_IxhgPG7DD9Je70rvsKhHwrd1O02mDpfLkex-DdNM65wboey10YpuyCT1fFudVDwk9_4mXx_OP2aXNfbR_ufm7W28pwSnJFGxC97oSVnemYpcAssyAYQ8atgp6ohjHb90pqiVYqqwSnlBopmOpY17HL4suxb0jZtcm4jGZvgvdockup4lxxcqIOMfyaMOX2NUzRz4PNjJj3Akos1PWRetEDts7bkKM28-uXrQSP1s35tVCUSJBsEeAomBhSimjbQ3Sjju8tkHa5UfvPjWaHHp00s_4F42mU_0u_ATMDkSs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251181950</pqid></control><display><type>article</type><title>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</title><source>SpringerLINK Journals</source><creator>Lebedev, M. V. ; Lvova, T. V. ; Shakhmin, A. L. ; Rakhimova, O. V. ; Dementev, P. A. ; Sedova, I. V.</creator><creatorcontrib>Lebedev, M. V. ; Lvova, T. V. ; Shakhmin, A. L. ; Rakhimova, O. V. ; Dementev, P. A. ; Sedova, I. V.</creatorcontrib><description>Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH 4 ) 2 S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH 4 ) 2 S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH 4 ) 2 S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782619070169</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>AMMONIUM COMPOUNDS ; Ammonium sulfides ; ANTIMONY ; ANTIMONY SULFIDES ; Atomic beam spectroscopy ; ATOMIC FORCE MICROSCOPY ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; FERMI LEVEL ; GALLIUM ANTIMONIDES ; GALLIUM OXIDES ; GALLIUM SULFIDES ; Interfaces ; LEAKAGE CURRENT ; Magnetic Materials ; Magnetism ; PASSIVATION ; Photoelectrons ; Physics ; Physics and Astronomy ; PROPANOLS ; ROUGHNESS ; SEMICONDUCTOR MATERIALS ; SOLVENTS ; STOICHIOMETRY ; Sulfides ; Surfaces ; Thin Films ; X-ray spectroscopy</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.892-900</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</citedby><cites>FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782619070169$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782619070169$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22944940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lebedev, M. V.</creatorcontrib><creatorcontrib>Lvova, T. V.</creatorcontrib><creatorcontrib>Shakhmin, A. L.</creatorcontrib><creatorcontrib>Rakhimova, O. V.</creatorcontrib><creatorcontrib>Dementev, P. A.</creatorcontrib><creatorcontrib>Sedova, I. V.</creatorcontrib><title>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH 4 ) 2 S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH 4 ) 2 S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH 4 ) 2 S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.</description><subject>AMMONIUM COMPOUNDS</subject><subject>Ammonium sulfides</subject><subject>ANTIMONY</subject><subject>ANTIMONY SULFIDES</subject><subject>Atomic beam spectroscopy</subject><subject>ATOMIC FORCE MICROSCOPY</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>FERMI LEVEL</subject><subject>GALLIUM ANTIMONIDES</subject><subject>GALLIUM OXIDES</subject><subject>GALLIUM SULFIDES</subject><subject>Interfaces</subject><subject>LEAKAGE CURRENT</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>PASSIVATION</subject><subject>Photoelectrons</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PROPANOLS</subject><subject>ROUGHNESS</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SOLVENTS</subject><subject>STOICHIOMETRY</subject><subject>Sulfides</subject><subject>Surfaces</subject><subject>Thin Films</subject><subject>X-ray spectroscopy</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kU1r3DAQQE1oINukP6A3Qy_twYlGH7Z0XLZpUlhIYJOzkeVRVsGWtpIcyL-vzbbsoRQdRsy8NwwzRfEZyDUA4zc7IDVrJK1BkYZArc6KFRBFqpo36sPyr1m11C-Kjym9EgIgBV8V_Xd8wyEcRvS5DLbMeywf9-_JmWD2ODqjh_IxhgPG7DD9Je70rvsKhHwrd1O02mDpfLkex-DdNM65wboey10YpuyCT1fFudVDwk9_4mXx_OP2aXNfbR_ufm7W28pwSnJFGxC97oSVnemYpcAssyAYQ8atgp6ohjHb90pqiVYqqwSnlBopmOpY17HL4suxb0jZtcm4jGZvgvdockup4lxxcqIOMfyaMOX2NUzRz4PNjJj3Akos1PWRetEDts7bkKM28-uXrQSP1s35tVCUSJBsEeAomBhSimjbQ3Sjju8tkHa5UfvPjWaHHp00s_4F42mU_0u_ATMDkSs</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Lebedev, M. V.</creator><creator>Lvova, T. V.</creator><creator>Shakhmin, A. L.</creator><creator>Rakhimova, O. V.</creator><creator>Dementev, P. A.</creator><creator>Sedova, I. V.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190701</creationdate><title>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</title><author>Lebedev, M. V. ; Lvova, T. V. ; Shakhmin, A. L. ; Rakhimova, O. V. ; Dementev, P. A. ; Sedova, I. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-2715dab5f8bcb3f213f3f1533e34f91d09733fdd98a8ef89f954222c8539b3bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>AMMONIUM COMPOUNDS</topic><topic>Ammonium sulfides</topic><topic>ANTIMONY</topic><topic>ANTIMONY SULFIDES</topic><topic>Atomic beam spectroscopy</topic><topic>ATOMIC FORCE MICROSCOPY</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>FERMI LEVEL</topic><topic>GALLIUM ANTIMONIDES</topic><topic>GALLIUM OXIDES</topic><topic>GALLIUM SULFIDES</topic><topic>Interfaces</topic><topic>LEAKAGE CURRENT</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>PASSIVATION</topic><topic>Photoelectrons</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PROPANOLS</topic><topic>ROUGHNESS</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SOLVENTS</topic><topic>STOICHIOMETRY</topic><topic>Sulfides</topic><topic>Surfaces</topic><topic>Thin Films</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lebedev, M. V.</creatorcontrib><creatorcontrib>Lvova, T. V.</creatorcontrib><creatorcontrib>Shakhmin, A. L.</creatorcontrib><creatorcontrib>Rakhimova, O. V.</creatorcontrib><creatorcontrib>Dementev, P. A.</creatorcontrib><creatorcontrib>Sedova, I. V.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lebedev, M. V.</au><au>Lvova, T. V.</au><au>Shakhmin, A. L.</au><au>Rakhimova, O. V.</au><au>Dementev, P. A.</au><au>Sedova, I. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>53</volume><issue>7</issue><spage>892</spage><epage>900</epage><pages>892-900</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>Various conditions of passivation of the GaSb(100) surface by ammonium sulfide ((NH 4 ) 2 S) solutions depending on the solution concentration, solvent, and treatment time are investigated by X-ray photoelectron spectroscopy and atomic-force microscopy. It is shown that treatment of the GaSb(100) surface by any (NH 4 ) 2 S solution leads to removal of the native oxide layer from the semiconductor surface and the formation of a passivating layer consisting of various gallium and antimony sulfides and oxides. The surface with the lowest roughness (RMS = 0.85 nm) is formed after semiconductor treatment with 4% aqueous ammonium sulfide solution for 30 min. Herewith, the atomic concentration ratio Ga/Sb at the surface is ~2. It is also found that aqueous ammonium sulfide solutions do not react with elemental antimony incorporated into the native-oxide layer. The latter causes a leakage current and Fermi-level pinning at the GaSb(100) surface. However, a 4% (NH 4 ) 2 S solution in isopropanol removes elemental antimony almost completely; herewith, the semiconductor surface remains stoichiometric if a treatment duration is up to 13 min.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782619070169</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.892-900
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22944940
source SpringerLINK Journals
subjects AMMONIUM COMPOUNDS
Ammonium sulfides
ANTIMONY
ANTIMONY SULFIDES
Atomic beam spectroscopy
ATOMIC FORCE MICROSCOPY
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
FERMI LEVEL
GALLIUM ANTIMONIDES
GALLIUM OXIDES
GALLIUM SULFIDES
Interfaces
LEAKAGE CURRENT
Magnetic Materials
Magnetism
PASSIVATION
Photoelectrons
Physics
Physics and Astronomy
PROPANOLS
ROUGHNESS
SEMICONDUCTOR MATERIALS
SOLVENTS
STOICHIOMETRY
Sulfides
Surfaces
Thin Films
X-ray spectroscopy
title Development of the Physicochemical Properties of the GaSb(100) Surface in Ammonium Sulfide Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T16%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20the%20Physicochemical%20Properties%20of%20the%20GaSb(100)%20Surface%20in%20Ammonium%20Sulfide%20Solutions&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Lebedev,%20M.%20V.&rft.date=2019-07-01&rft.volume=53&rft.issue=7&rft.spage=892&rft.epage=900&rft.pages=892-900&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782619070169&rft_dat=%3Cgale_osti_%3EA592081830%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251181950&rft_id=info:pmid/&rft_galeid=A592081830&rfr_iscdi=true