Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers
The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain cri...
Gespeichert in:
Veröffentlicht in: | Semiconductors (Woodbury, N.Y.) N.Y.), 2019-07, Vol.53 (7), p.930-935 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 7 |
container_start_page | 930 |
container_title | Semiconductors (Woodbury, N.Y.) |
container_volume | 53 |
creator | Vasilyeva, G. Yu Greshnov, A. A. Vasilyev, Yu. B. Mikhailov, N. N. Usikova, A. A. Haug, R. J. |
description | The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature
T
c
= 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at
T
>
T
c
prove that the ground state of the system at
T
=
T
c
is gapless. At higher temperatures (20 K <
T
< 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band
kp
model taking into account Γ
8
-band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ
8
band. |
doi_str_mv | 10.1134/S1063782619070248 |
format | Article |
fullrecord | <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22944934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592081840</galeid><sourcerecordid>A592081840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f4773bbe8570b1256103947850c42d11db1e099d9eaf8d6c8d21f7df816f0fde3</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhk1poWnaB-hN0GucaiTZlo4htN3AhlJ2S49Glka7Sr2yK8mEPffFq2UDOZSgw4xG_zeM_qmqj0CvAbj4vAHa8k6yFhTtKBPyVXUBVNG6FZ16fcpbXp_e31bvUnqgFEA24qL6e693AfOUow5pnmImmxlNjlMy03wkkyN5j-QuZIxOG7wiPxYd8nIgv3Acr4gOlqyOQ_SWbLLOmIgPJYuLyUsst0ef9wTaOhzq7d6b3-R-GbOfRySr3RbJWh8xpvfVG6fHhB-e4mX18-uX7e2qXn__dnd7s64N502uneg6Pgwom44OwJoWKFeikw01glkAOwBSpaxC7aRtjbQMXGedhNZRZ5FfVp_OfaeUfZ-Mz2j2ZgqhfLhnTAmhuHhWzXH6s2DK_cO0xFAGK5qm2Ma6lhfV9Vm10yP2PriTg6YciwdfeqLzpX7TKEYlSEELAGfAFG9TRNfP0R90PPZA-9MK-_9WWBh2ZlLRhh3G51Fehv4BZW2c8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251182763</pqid></control><display><type>article</type><title>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vasilyeva, G. Yu ; Greshnov, A. A. ; Vasilyev, Yu. B. ; Mikhailov, N. N. ; Usikova, A. A. ; Haug, R. J.</creator><creatorcontrib>Vasilyeva, G. Yu ; Greshnov, A. A. ; Vasilyev, Yu. B. ; Mikhailov, N. N. ; Usikova, A. A. ; Haug, R. J.</creatorcontrib><description>The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature
T
c
= 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at
T
>
T
c
prove that the ground state of the system at
T
=
T
c
is gapless. At higher temperatures (20 K <
T
< 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band
kp
model taking into account Γ
8
-band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ
8
band.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782619070248</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CHARGE CARRIERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRITICAL TEMPERATURE ; Current carriers ; Dependence ; ELECTRIC CONDUCTIVITY ; Electric properties ; ELECTRONS ; GROUND STATES ; HALL EFFECT ; HOLES ; Low-Dimensional Systems ; MAGNETIC FIELDS ; Magnetic Materials ; Magnetism ; MERCURY TELLURIDES ; Physics ; Physics and Astronomy ; Quantum Phenomena ; QUANTUM WELLS ; Semiconductor Structures ; SPECTROSCOPY ; STRESSES ; Temperature ; Tensors ; TOPOLOGY ; Transition temperature</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.930-935</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-f4773bbe8570b1256103947850c42d11db1e099d9eaf8d6c8d21f7df816f0fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782619070248$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782619070248$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22944934$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasilyeva, G. Yu</creatorcontrib><creatorcontrib>Greshnov, A. A.</creatorcontrib><creatorcontrib>Vasilyev, Yu. B.</creatorcontrib><creatorcontrib>Mikhailov, N. N.</creatorcontrib><creatorcontrib>Usikova, A. A.</creatorcontrib><creatorcontrib>Haug, R. J.</creatorcontrib><title>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature
T
c
= 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at
T
>
T
c
prove that the ground state of the system at
T
=
T
c
is gapless. At higher temperatures (20 K <
T
< 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band
kp
model taking into account Γ
8
-band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ
8
band.</description><subject>CHARGE CARRIERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRITICAL TEMPERATURE</subject><subject>Current carriers</subject><subject>Dependence</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electric properties</subject><subject>ELECTRONS</subject><subject>GROUND STATES</subject><subject>HALL EFFECT</subject><subject>HOLES</subject><subject>Low-Dimensional Systems</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MERCURY TELLURIDES</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Phenomena</subject><subject>QUANTUM WELLS</subject><subject>Semiconductor Structures</subject><subject>SPECTROSCOPY</subject><subject>STRESSES</subject><subject>Temperature</subject><subject>Tensors</subject><subject>TOPOLOGY</subject><subject>Transition temperature</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAQhk1poWnaB-hN0GucaiTZlo4htN3AhlJ2S49Glka7Sr2yK8mEPffFq2UDOZSgw4xG_zeM_qmqj0CvAbj4vAHa8k6yFhTtKBPyVXUBVNG6FZ16fcpbXp_e31bvUnqgFEA24qL6e693AfOUow5pnmImmxlNjlMy03wkkyN5j-QuZIxOG7wiPxYd8nIgv3Acr4gOlqyOQ_SWbLLOmIgPJYuLyUsst0ef9wTaOhzq7d6b3-R-GbOfRySr3RbJWh8xpvfVG6fHhB-e4mX18-uX7e2qXn__dnd7s64N502uneg6Pgwom44OwJoWKFeikw01glkAOwBSpaxC7aRtjbQMXGedhNZRZ5FfVp_OfaeUfZ-Mz2j2ZgqhfLhnTAmhuHhWzXH6s2DK_cO0xFAGK5qm2Ma6lhfV9Vm10yP2PriTg6YciwdfeqLzpX7TKEYlSEELAGfAFG9TRNfP0R90PPZA-9MK-_9WWBh2ZlLRhh3G51Fehv4BZW2c8w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Vasilyeva, G. Yu</creator><creator>Greshnov, A. A.</creator><creator>Vasilyev, Yu. B.</creator><creator>Mikhailov, N. N.</creator><creator>Usikova, A. A.</creator><creator>Haug, R. J.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190701</creationdate><title>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</title><author>Vasilyeva, G. Yu ; Greshnov, A. A. ; Vasilyev, Yu. B. ; Mikhailov, N. N. ; Usikova, A. A. ; Haug, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f4773bbe8570b1256103947850c42d11db1e099d9eaf8d6c8d21f7df816f0fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CHARGE CARRIERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRITICAL TEMPERATURE</topic><topic>Current carriers</topic><topic>Dependence</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electric properties</topic><topic>ELECTRONS</topic><topic>GROUND STATES</topic><topic>HALL EFFECT</topic><topic>HOLES</topic><topic>Low-Dimensional Systems</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MERCURY TELLURIDES</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Phenomena</topic><topic>QUANTUM WELLS</topic><topic>Semiconductor Structures</topic><topic>SPECTROSCOPY</topic><topic>STRESSES</topic><topic>Temperature</topic><topic>Tensors</topic><topic>TOPOLOGY</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasilyeva, G. Yu</creatorcontrib><creatorcontrib>Greshnov, A. A.</creatorcontrib><creatorcontrib>Vasilyev, Yu. B.</creatorcontrib><creatorcontrib>Mikhailov, N. N.</creatorcontrib><creatorcontrib>Usikova, A. A.</creatorcontrib><creatorcontrib>Haug, R. J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasilyeva, G. Yu</au><au>Greshnov, A. A.</au><au>Vasilyev, Yu. B.</au><au>Mikhailov, N. N.</au><au>Usikova, A. A.</au><au>Haug, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>53</volume><issue>7</issue><spage>930</spage><epage>935</epage><pages>930-935</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature
T
c
= 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at
T
>
T
c
prove that the ground state of the system at
T
=
T
c
is gapless. At higher temperatures (20 K <
T
< 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band
kp
model taking into account Γ
8
-band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ
8
band.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782619070248</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7826 |
ispartof | Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.930-935 |
issn | 1063-7826 1090-6479 |
language | eng |
recordid | cdi_osti_scitechconnect_22944934 |
source | SpringerLink Journals - AutoHoldings |
subjects | CHARGE CARRIERS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY CRITICAL TEMPERATURE Current carriers Dependence ELECTRIC CONDUCTIVITY Electric properties ELECTRONS GROUND STATES HALL EFFECT HOLES Low-Dimensional Systems MAGNETIC FIELDS Magnetic Materials Magnetism MERCURY TELLURIDES Physics Physics and Astronomy Quantum Phenomena QUANTUM WELLS Semiconductor Structures SPECTROSCOPY STRESSES Temperature Tensors TOPOLOGY Transition temperature |
title | Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetotransport%20Spectroscopy%20of%20the%20Interface,%20Quantum%20Well,%20and%20Hybrid%20States%20in%20Structures%20with%2016-nm-Thick%20Multiple%20HgTe%20Layers&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Vasilyeva,%20G.%20Yu&rft.date=2019-07-01&rft.volume=53&rft.issue=7&rft.spage=930&rft.epage=935&rft.pages=930-935&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782619070248&rft_dat=%3Cgale_osti_%3EA592081840%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251182763&rft_id=info:pmid/&rft_galeid=A592081840&rfr_iscdi=true |