Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers

The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain cri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductors (Woodbury, N.Y.) N.Y.), 2019-07, Vol.53 (7), p.930-935
Hauptverfasser: Vasilyeva, G. Yu, Greshnov, A. A., Vasilyev, Yu. B., Mikhailov, N. N., Usikova, A. A., Haug, R. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 7
container_start_page 930
container_title Semiconductors (Woodbury, N.Y.)
container_volume 53
creator Vasilyeva, G. Yu
Greshnov, A. A.
Vasilyev, Yu. B.
Mikhailov, N. N.
Usikova, A. A.
Haug, R. J.
description The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature T c = 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at T > T c prove that the ground state of the system at T = T c is gapless. At higher temperatures (20 K < T < 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band kp model taking into account Γ 8 -band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ 8 band.
doi_str_mv 10.1134/S1063782619070248
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22944934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A592081840</galeid><sourcerecordid>A592081840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f4773bbe8570b1256103947850c42d11db1e099d9eaf8d6c8d21f7df816f0fde3</originalsourceid><addsrcrecordid>eNp1kcFq3DAQhk1poWnaB-hN0GucaiTZlo4htN3AhlJ2S49Glka7Sr2yK8mEPffFq2UDOZSgw4xG_zeM_qmqj0CvAbj4vAHa8k6yFhTtKBPyVXUBVNG6FZ16fcpbXp_e31bvUnqgFEA24qL6e693AfOUow5pnmImmxlNjlMy03wkkyN5j-QuZIxOG7wiPxYd8nIgv3Acr4gOlqyOQ_SWbLLOmIgPJYuLyUsst0ef9wTaOhzq7d6b3-R-GbOfRySr3RbJWh8xpvfVG6fHhB-e4mX18-uX7e2qXn__dnd7s64N502uneg6Pgwom44OwJoWKFeikw01glkAOwBSpaxC7aRtjbQMXGedhNZRZ5FfVp_OfaeUfZ-Mz2j2ZgqhfLhnTAmhuHhWzXH6s2DK_cO0xFAGK5qm2Ma6lhfV9Vm10yP2PriTg6YciwdfeqLzpX7TKEYlSEELAGfAFG9TRNfP0R90PPZA-9MK-_9WWBh2ZlLRhh3G51Fehv4BZW2c8w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2251182763</pqid></control><display><type>article</type><title>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vasilyeva, G. Yu ; Greshnov, A. A. ; Vasilyev, Yu. B. ; Mikhailov, N. N. ; Usikova, A. A. ; Haug, R. J.</creator><creatorcontrib>Vasilyeva, G. Yu ; Greshnov, A. A. ; Vasilyev, Yu. B. ; Mikhailov, N. N. ; Usikova, A. A. ; Haug, R. J.</creatorcontrib><description>The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature T c = 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at T &gt; T c prove that the ground state of the system at T = T c is gapless. At higher temperatures (20 K &lt; T &lt; 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band kp model taking into account Γ 8 -band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ 8 band.</description><identifier>ISSN: 1063-7826</identifier><identifier>EISSN: 1090-6479</identifier><identifier>DOI: 10.1134/S1063782619070248</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CHARGE CARRIERS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; CRITICAL TEMPERATURE ; Current carriers ; Dependence ; ELECTRIC CONDUCTIVITY ; Electric properties ; ELECTRONS ; GROUND STATES ; HALL EFFECT ; HOLES ; Low-Dimensional Systems ; MAGNETIC FIELDS ; Magnetic Materials ; Magnetism ; MERCURY TELLURIDES ; Physics ; Physics and Astronomy ; Quantum Phenomena ; QUANTUM WELLS ; Semiconductor Structures ; SPECTROSCOPY ; STRESSES ; Temperature ; Tensors ; TOPOLOGY ; Transition temperature</subject><ispartof>Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.930-935</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c335t-f4773bbe8570b1256103947850c42d11db1e099d9eaf8d6c8d21f7df816f0fde3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1063782619070248$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1063782619070248$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22944934$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Vasilyeva, G. Yu</creatorcontrib><creatorcontrib>Greshnov, A. A.</creatorcontrib><creatorcontrib>Vasilyev, Yu. B.</creatorcontrib><creatorcontrib>Mikhailov, N. N.</creatorcontrib><creatorcontrib>Usikova, A. A.</creatorcontrib><creatorcontrib>Haug, R. J.</creatorcontrib><title>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</title><title>Semiconductors (Woodbury, N.Y.)</title><addtitle>Semiconductors</addtitle><description>The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature T c = 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at T &gt; T c prove that the ground state of the system at T = T c is gapless. At higher temperatures (20 K &lt; T &lt; 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band kp model taking into account Γ 8 -band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ 8 band.</description><subject>CHARGE CARRIERS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>CRITICAL TEMPERATURE</subject><subject>Current carriers</subject><subject>Dependence</subject><subject>ELECTRIC CONDUCTIVITY</subject><subject>Electric properties</subject><subject>ELECTRONS</subject><subject>GROUND STATES</subject><subject>HALL EFFECT</subject><subject>HOLES</subject><subject>Low-Dimensional Systems</subject><subject>MAGNETIC FIELDS</subject><subject>Magnetic Materials</subject><subject>Magnetism</subject><subject>MERCURY TELLURIDES</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Phenomena</subject><subject>QUANTUM WELLS</subject><subject>Semiconductor Structures</subject><subject>SPECTROSCOPY</subject><subject>STRESSES</subject><subject>Temperature</subject><subject>Tensors</subject><subject>TOPOLOGY</subject><subject>Transition temperature</subject><issn>1063-7826</issn><issn>1090-6479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kcFq3DAQhk1poWnaB-hN0GucaiTZlo4htN3AhlJ2S49Glka7Sr2yK8mEPffFq2UDOZSgw4xG_zeM_qmqj0CvAbj4vAHa8k6yFhTtKBPyVXUBVNG6FZ16fcpbXp_e31bvUnqgFEA24qL6e693AfOUow5pnmImmxlNjlMy03wkkyN5j-QuZIxOG7wiPxYd8nIgv3Acr4gOlqyOQ_SWbLLOmIgPJYuLyUsst0ef9wTaOhzq7d6b3-R-GbOfRySr3RbJWh8xpvfVG6fHhB-e4mX18-uX7e2qXn__dnd7s64N502uneg6Pgwom44OwJoWKFeikw01glkAOwBSpaxC7aRtjbQMXGedhNZRZ5FfVp_OfaeUfZ-Mz2j2ZgqhfLhnTAmhuHhWzXH6s2DK_cO0xFAGK5qm2Ma6lhfV9Vm10yP2PriTg6YciwdfeqLzpX7TKEYlSEELAGfAFG9TRNfP0R90PPZA-9MK-_9WWBh2ZlLRhh3G51Fehv4BZW2c8w</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Vasilyeva, G. Yu</creator><creator>Greshnov, A. A.</creator><creator>Vasilyev, Yu. B.</creator><creator>Mikhailov, N. N.</creator><creator>Usikova, A. A.</creator><creator>Haug, R. J.</creator><general>Pleiades Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20190701</creationdate><title>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</title><author>Vasilyeva, G. Yu ; Greshnov, A. A. ; Vasilyev, Yu. B. ; Mikhailov, N. N. ; Usikova, A. A. ; Haug, R. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f4773bbe8570b1256103947850c42d11db1e099d9eaf8d6c8d21f7df816f0fde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CHARGE CARRIERS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>CRITICAL TEMPERATURE</topic><topic>Current carriers</topic><topic>Dependence</topic><topic>ELECTRIC CONDUCTIVITY</topic><topic>Electric properties</topic><topic>ELECTRONS</topic><topic>GROUND STATES</topic><topic>HALL EFFECT</topic><topic>HOLES</topic><topic>Low-Dimensional Systems</topic><topic>MAGNETIC FIELDS</topic><topic>Magnetic Materials</topic><topic>Magnetism</topic><topic>MERCURY TELLURIDES</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Phenomena</topic><topic>QUANTUM WELLS</topic><topic>Semiconductor Structures</topic><topic>SPECTROSCOPY</topic><topic>STRESSES</topic><topic>Temperature</topic><topic>Tensors</topic><topic>TOPOLOGY</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasilyeva, G. Yu</creatorcontrib><creatorcontrib>Greshnov, A. A.</creatorcontrib><creatorcontrib>Vasilyev, Yu. B.</creatorcontrib><creatorcontrib>Mikhailov, N. N.</creatorcontrib><creatorcontrib>Usikova, A. A.</creatorcontrib><creatorcontrib>Haug, R. J.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasilyeva, G. Yu</au><au>Greshnov, A. A.</au><au>Vasilyev, Yu. B.</au><au>Mikhailov, N. N.</au><au>Usikova, A. A.</au><au>Haug, R. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers</atitle><jtitle>Semiconductors (Woodbury, N.Y.)</jtitle><stitle>Semiconductors</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>53</volume><issue>7</issue><spage>930</spage><epage>935</epage><pages>930-935</pages><issn>1063-7826</issn><eissn>1090-6479</eissn><abstract>The longitudinal and Hall components of the resistivity tensor are measured in structures with multiple HgTe layers 16 nm thick in magnetic fields to 12 T at temperatures from 1.5 to 300 K. The slope of the magnetic-field dependence of the Hall resistance is found to change its sign at a certain critical temperature T c = 5 and 10 K in the two studied samples, which indicates the presence of two types of charge carriers and a change in the relation between their contributions to the Hall resistance with temperature. The low critical temperature and manifestation of the “two-component” nature of the Hall curves only at T &gt; T c prove that the ground state of the system at T = T c is gapless. At higher temperatures (20 K &lt; T &lt; 200 K), the Hall concentration is proportional to the temperature with good accuracy. The description of the charge-carrier dispersion laws by the 8-band kp model taking into account Γ 8 -band-edge splitting caused by mechanical stresses, which forms both types of state in HgTe, makes it possible to quantitatively describe the observed magnetotransport features. It is shown that they are associated with the simultaneous filling of electron and hole states formed as a result of mixing interface states responsible for the topological-insulator phase and the quantum-confined states in the Γ 8 band.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063782619070248</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7826
ispartof Semiconductors (Woodbury, N.Y.), 2019-07, Vol.53 (7), p.930-935
issn 1063-7826
1090-6479
language eng
recordid cdi_osti_scitechconnect_22944934
source SpringerLink Journals - AutoHoldings
subjects CHARGE CARRIERS
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
CRITICAL TEMPERATURE
Current carriers
Dependence
ELECTRIC CONDUCTIVITY
Electric properties
ELECTRONS
GROUND STATES
HALL EFFECT
HOLES
Low-Dimensional Systems
MAGNETIC FIELDS
Magnetic Materials
Magnetism
MERCURY TELLURIDES
Physics
Physics and Astronomy
Quantum Phenomena
QUANTUM WELLS
Semiconductor Structures
SPECTROSCOPY
STRESSES
Temperature
Tensors
TOPOLOGY
Transition temperature
title Magnetotransport Spectroscopy of the Interface, Quantum Well, and Hybrid States in Structures with 16-nm-Thick Multiple HgTe Layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T17%3A20%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetotransport%20Spectroscopy%20of%20the%20Interface,%20Quantum%20Well,%20and%20Hybrid%20States%20in%20Structures%20with%2016-nm-Thick%20Multiple%20HgTe%20Layers&rft.jtitle=Semiconductors%20(Woodbury,%20N.Y.)&rft.au=Vasilyeva,%20G.%20Yu&rft.date=2019-07-01&rft.volume=53&rft.issue=7&rft.spage=930&rft.epage=935&rft.pages=930-935&rft.issn=1063-7826&rft.eissn=1090-6479&rft_id=info:doi/10.1134/S1063782619070248&rft_dat=%3Cgale_osti_%3EA592081840%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2251182763&rft_id=info:pmid/&rft_galeid=A592081840&rfr_iscdi=true