Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning

In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2019-10, Vol.50 (5), p.2334-2342
Hauptverfasser: Neumann, Sebastian, Asad, Amjad, Kasper, Tom, Schwarze, Rüdiger
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2342
container_issue 5
container_start_page 2334
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 50
creator Neumann, Sebastian
Asad, Amjad
Kasper, Tom
Schwarze, Rüdiger
description In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.
doi_str_mv 10.1007/s11663-019-01637-6
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22933473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2254193756</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-daff598d9dad481ea317ffdd74bdbdc2c06a40f8023c964d80454ee4f9ff666b3</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxRdR8O8X8BTwvJpsstnNUYpVoVVo6zmkyaRGtllNsorf3rQrePMwzPD4vcfAK4pLgq8Jxs1NJIRzWmIi8nDalPygOCE1oyURhB_mGze0rDmpj4vTGN8wxlwIelJ8PA1bCE6rDi3dduhUcr1HvUVzSFmbQ5fQtOu_kPNIoWcP5TIF5Q1aDd64-IoWsFHBOL9Btzq5T0BT12ViH7PjFqBGfdKB8pk7L46s6iJc_O6z4mV6t5o8lLPn-8fJ7azUjNBUGmVtLVojjDKsJaAoaaw1pmFrsza60pgrhm2LK6oFZ6bFrGYAzAprOedrelZcjbl9TE5G7RLoV917DzrJqhKUsob-Ue-h_xggJvnWD8HnxzJTMyJoU_NMVSOlQx9jACvfg9uq8C0JlrsC5FiAzAXIfQFyZ6KjKWbYbyD8Rf_j-gGobYkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2254193756</pqid></control><display><type>article</type><title>Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning</title><source>Springer Nature - Complete Springer Journals</source><creator>Neumann, Sebastian ; Asad, Amjad ; Kasper, Tom ; Schwarze, Rüdiger</creator><creatorcontrib>Neumann, Sebastian ; Asad, Amjad ; Kasper, Tom ; Schwarze, Rüdiger</creatorcontrib><description>In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-019-01637-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>BUBBLES ; CARBON ; CARBON MONOXIDE ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; CLEANING ; Computational fluid dynamics ; Computer simulation ; DEPOSITION ; FILTRATION ; LARGE-EDDY SIMULATION ; MATERIALS SCIENCE ; MELTING ; Melts ; Metallic Materials ; METALS ; Nanotechnology ; Nonmetallic inclusions ; OXYGEN ; Simulation ; STEELS ; Structural Materials ; SURFACES ; Surfaces and Interfaces ; Thin Films ; Tundishes ; TURBULENCE ; TWO-PHASE FLOW</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2019-10, Vol.50 (5), p.2334-2342</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-daff598d9dad481ea317ffdd74bdbdc2c06a40f8023c964d80454ee4f9ff666b3</citedby><cites>FETCH-LOGICAL-c413t-daff598d9dad481ea317ffdd74bdbdc2c06a40f8023c964d80454ee4f9ff666b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-019-01637-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-019-01637-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22933473$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Neumann, Sebastian</creatorcontrib><creatorcontrib>Asad, Amjad</creatorcontrib><creatorcontrib>Kasper, Tom</creatorcontrib><creatorcontrib>Schwarze, Rüdiger</creatorcontrib><title>Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.</description><subject>BUBBLES</subject><subject>CARBON</subject><subject>CARBON MONOXIDE</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>CLEANING</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>DEPOSITION</subject><subject>FILTRATION</subject><subject>LARGE-EDDY SIMULATION</subject><subject>MATERIALS SCIENCE</subject><subject>MELTING</subject><subject>Melts</subject><subject>Metallic Materials</subject><subject>METALS</subject><subject>Nanotechnology</subject><subject>Nonmetallic inclusions</subject><subject>OXYGEN</subject><subject>Simulation</subject><subject>STEELS</subject><subject>Structural Materials</subject><subject>SURFACES</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tundishes</subject><subject>TURBULENCE</subject><subject>TWO-PHASE FLOW</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU9LAzEQxRdR8O8X8BTwvJpsstnNUYpVoVVo6zmkyaRGtllNsorf3rQrePMwzPD4vcfAK4pLgq8Jxs1NJIRzWmIi8nDalPygOCE1oyURhB_mGze0rDmpj4vTGN8wxlwIelJ8PA1bCE6rDi3dduhUcr1HvUVzSFmbQ5fQtOu_kPNIoWcP5TIF5Q1aDd64-IoWsFHBOL9Btzq5T0BT12ViH7PjFqBGfdKB8pk7L46s6iJc_O6z4mV6t5o8lLPn-8fJ7azUjNBUGmVtLVojjDKsJaAoaaw1pmFrsza60pgrhm2LK6oFZ6bFrGYAzAprOedrelZcjbl9TE5G7RLoV917DzrJqhKUsob-Ue-h_xggJvnWD8HnxzJTMyJoU_NMVSOlQx9jACvfg9uq8C0JlrsC5FiAzAXIfQFyZ6KjKWbYbyD8Rf_j-gGobYkw</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Neumann, Sebastian</creator><creator>Asad, Amjad</creator><creator>Kasper, Tom</creator><creator>Schwarze, Rüdiger</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20191001</creationdate><title>Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning</title><author>Neumann, Sebastian ; Asad, Amjad ; Kasper, Tom ; Schwarze, Rüdiger</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-daff598d9dad481ea317ffdd74bdbdc2c06a40f8023c964d80454ee4f9ff666b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>BUBBLES</topic><topic>CARBON</topic><topic>CARBON MONOXIDE</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>CLEANING</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>DEPOSITION</topic><topic>FILTRATION</topic><topic>LARGE-EDDY SIMULATION</topic><topic>MATERIALS SCIENCE</topic><topic>MELTING</topic><topic>Melts</topic><topic>Metallic Materials</topic><topic>METALS</topic><topic>Nanotechnology</topic><topic>Nonmetallic inclusions</topic><topic>OXYGEN</topic><topic>Simulation</topic><topic>STEELS</topic><topic>Structural Materials</topic><topic>SURFACES</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tundishes</topic><topic>TURBULENCE</topic><topic>TWO-PHASE FLOW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neumann, Sebastian</creatorcontrib><creatorcontrib>Asad, Amjad</creatorcontrib><creatorcontrib>Kasper, Tom</creatorcontrib><creatorcontrib>Schwarze, Rüdiger</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neumann, Sebastian</au><au>Asad, Amjad</au><au>Kasper, Tom</au><au>Schwarze, Rüdiger</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>50</volume><issue>5</issue><spage>2334</spage><epage>2342</epage><pages>2334-2342</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>In the paper, two different cleaning strategies for nonmetallic inclusions in steel melts, active filtration and reactive cleaning, are examined in a prototype tundish configuration. In active filtration, nonmetallic inclusions are deposited at the filter surfaces. In reactive cleaning, nonmetallic inclusions stick to the filter surfaces, too. In addition, they are floated by the action of carbon monoxide bubbles, which are generated by reaction between carbon and oxygen in the steel melt. In order to compare the performance of both strategies, numerical simulations of the two-phase flows of steel melt and dispersed nonmetallic inclusions are performed. Turbulence is resolved with implicit large eddy simulation. If necessary, species transports of dissolved carbon in the melt and reaction with oxygen are employed. Cleaning efficiencies are deduced from the simulations which demonstrate that reactive cleaning is much more efficient than active filtration.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-019-01637-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2019-10, Vol.50 (5), p.2334-2342
issn 1073-5615
1543-1916
language eng
recordid cdi_osti_scitechconnect_22933473
source Springer Nature - Complete Springer Journals
subjects BUBBLES
CARBON
CARBON MONOXIDE
Characterization and Evaluation of Materials
Chemistry and Materials Science
CLEANING
Computational fluid dynamics
Computer simulation
DEPOSITION
FILTRATION
LARGE-EDDY SIMULATION
MATERIALS SCIENCE
MELTING
Melts
Metallic Materials
METALS
Nanotechnology
Nonmetallic inclusions
OXYGEN
Simulation
STEELS
Structural Materials
SURFACES
Surfaces and Interfaces
Thin Films
Tundishes
TURBULENCE
TWO-PHASE FLOW
title Numerical Simulation of Metal Melt Flow in a One-Strand Tundish Regarding Active Filtration and Reactive Cleaning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A46%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Metal%20Melt%20Flow%20in%20a%20One-Strand%20Tundish%20Regarding%20Active%20Filtration%20and%20Reactive%20Cleaning&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Neumann,%20Sebastian&rft.date=2019-10-01&rft.volume=50&rft.issue=5&rft.spage=2334&rft.epage=2342&rft.pages=2334-2342&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-019-01637-6&rft_dat=%3Cproquest_osti_%3E2254193756%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2254193756&rft_id=info:pmid/&rfr_iscdi=true