Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag

Experiments were performed using a range of test conditions to elucidate the rate controlling step during the reaction of liquid iron-carbon droplets and slags containing manganese oxide. Four conditions were tested in the system: initial MnO content in the slag (5, 10, and 15 wt pct), initial carbo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. B, Process metallurgy and materials processing science Process metallurgy and materials processing science, 2019-12, Vol.50 (6), p.2733-2746
Hauptverfasser: Jamieson, B. J., Barati, M., Coley, K. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2746
container_issue 6
container_start_page 2733
container_title Metallurgical and materials transactions. B, Process metallurgy and materials processing science
container_volume 50
creator Jamieson, B. J.
Barati, M.
Coley, K. S.
description Experiments were performed using a range of test conditions to elucidate the rate controlling step during the reaction of liquid iron-carbon droplets and slags containing manganese oxide. Four conditions were tested in the system: initial MnO content in the slag (5, 10, and 15 wt pct), initial carbon content of the metal (1, 2.5, 4.3 wt pct), initial droplet mass (0.5, 1.0, and 1.5 g), and reaction temperature (1823 K [1550 °C], 1873 K [1600 °C], and 1923 K [1650 °C]). Data were collected using the Constant Volume Pressure Increase (CVPI) technique which tracked the continuous pressure increase in the sealed furnace over time. Samples were quenched at the end of each experiment and chemistry was checked using LECO Carbon Analysis and ICP (Inductively Coupled Plasma) for manganese. The rate of reaction can be broken into a faster initial period related to internal CO formation, and a slower second reaction controlled by a complex mechanism involving transport of oxygen from slag to metal via CO 2 and decomposition of the CO 2 at the gas–metal interface.
doi_str_mv 10.1007/s11663-019-01696-9
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22933411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2311915961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-3dd6d09803c239b170953c1682536805361eda99b222ff5597254ae9bfeecf793</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA69HcZJJpljL4wkrBxzpkMkk7pU1qkoL-ezOO0J2L-4B7zuHyIXQJ-Bowrm8iAOe0xCByccFLcYQmwCpaggB-nHdc05JxYKfoLMY1xpgLQSeoee6dSb2OhbdFWpmiUaH1eQnbXhevptvr1Hs3XF-UWypnoikWX31nChv8tnjbqOU5OrFqE83F35yij_u79-axnC8enprbealpVaeSdh3vsJhhqgkVLdRYMKqBzwijfIZzA9MpIVpCiLWMiZqwShnRWmO0rQWdoqsx18fUy6j7ZPRKe-eMTpIQQWkFcFDtgv_cm5jk2u-Dy49JQiHjYIIPKjKqdPAxBmPlLvRbFb4lYDkglSNSmZHKX6RyeICOppjFbmnCIfof1w8843bE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2311915961</pqid></control><display><type>article</type><title>Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jamieson, B. J. ; Barati, M. ; Coley, K. S.</creator><creatorcontrib>Jamieson, B. J. ; Barati, M. ; Coley, K. S.</creatorcontrib><description>Experiments were performed using a range of test conditions to elucidate the rate controlling step during the reaction of liquid iron-carbon droplets and slags containing manganese oxide. Four conditions were tested in the system: initial MnO content in the slag (5, 10, and 15 wt pct), initial carbon content of the metal (1, 2.5, 4.3 wt pct), initial droplet mass (0.5, 1.0, and 1.5 g), and reaction temperature (1823 K [1550 °C], 1873 K [1600 °C], and 1923 K [1650 °C]). Data were collected using the Constant Volume Pressure Increase (CVPI) technique which tracked the continuous pressure increase in the sealed furnace over time. Samples were quenched at the end of each experiment and chemistry was checked using LECO Carbon Analysis and ICP (Inductively Coupled Plasma) for manganese. The rate of reaction can be broken into a faster initial period related to internal CO formation, and a slower second reaction controlled by a complex mechanism involving transport of oxygen from slag to metal via CO 2 and decomposition of the CO 2 at the gas–metal interface.</description><identifier>ISSN: 1073-5615</identifier><identifier>EISSN: 1543-1916</identifier><identifier>DOI: 10.1007/s11663-019-01696-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>CARBON ; Carbon content ; CARBON DIOXIDE ; CARBON MONOXIDE ; Carbothermic reactions ; Characterization and Evaluation of Materials ; CHEMISTRY ; Chemistry and Materials Science ; Continuous furnaces ; DECOMPOSITION ; DROPLETS ; ICP MASS SPECTROSCOPY ; Inductively coupled plasma ; IRON ; Iron and steel making ; KINETICS ; LIQUIDS ; MANGANESE ; MANGANESE OXIDES ; MATERIALS SCIENCE ; Metallic Materials ; Nanotechnology ; Organic chemistry ; OXYGEN ; Reaction kinetics ; REDUCTION ; Slag ; SLAGS ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2019-12, Vol.50 (6), p.2733-2746</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions B is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-3dd6d09803c239b170953c1682536805361eda99b222ff5597254ae9bfeecf793</citedby><cites>FETCH-LOGICAL-c347t-3dd6d09803c239b170953c1682536805361eda99b222ff5597254ae9bfeecf793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11663-019-01696-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11663-019-01696-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22933411$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jamieson, B. J.</creatorcontrib><creatorcontrib>Barati, M.</creatorcontrib><creatorcontrib>Coley, K. S.</creatorcontrib><title>Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag</title><title>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</title><addtitle>Metall Mater Trans B</addtitle><description>Experiments were performed using a range of test conditions to elucidate the rate controlling step during the reaction of liquid iron-carbon droplets and slags containing manganese oxide. Four conditions were tested in the system: initial MnO content in the slag (5, 10, and 15 wt pct), initial carbon content of the metal (1, 2.5, 4.3 wt pct), initial droplet mass (0.5, 1.0, and 1.5 g), and reaction temperature (1823 K [1550 °C], 1873 K [1600 °C], and 1923 K [1650 °C]). Data were collected using the Constant Volume Pressure Increase (CVPI) technique which tracked the continuous pressure increase in the sealed furnace over time. Samples were quenched at the end of each experiment and chemistry was checked using LECO Carbon Analysis and ICP (Inductively Coupled Plasma) for manganese. The rate of reaction can be broken into a faster initial period related to internal CO formation, and a slower second reaction controlled by a complex mechanism involving transport of oxygen from slag to metal via CO 2 and decomposition of the CO 2 at the gas–metal interface.</description><subject>CARBON</subject><subject>Carbon content</subject><subject>CARBON DIOXIDE</subject><subject>CARBON MONOXIDE</subject><subject>Carbothermic reactions</subject><subject>Characterization and Evaluation of Materials</subject><subject>CHEMISTRY</subject><subject>Chemistry and Materials Science</subject><subject>Continuous furnaces</subject><subject>DECOMPOSITION</subject><subject>DROPLETS</subject><subject>ICP MASS SPECTROSCOPY</subject><subject>Inductively coupled plasma</subject><subject>IRON</subject><subject>Iron and steel making</subject><subject>KINETICS</subject><subject>LIQUIDS</subject><subject>MANGANESE</subject><subject>MANGANESE OXIDES</subject><subject>MATERIALS SCIENCE</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Organic chemistry</subject><subject>OXYGEN</subject><subject>Reaction kinetics</subject><subject>REDUCTION</subject><subject>Slag</subject><subject>SLAGS</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5615</issn><issn>1543-1916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLAzEUhYMoWKt_wNWA69HcZJJpljL4wkrBxzpkMkk7pU1qkoL-ezOO0J2L-4B7zuHyIXQJ-Bowrm8iAOe0xCByccFLcYQmwCpaggB-nHdc05JxYKfoLMY1xpgLQSeoee6dSb2OhbdFWpmiUaH1eQnbXhevptvr1Hs3XF-UWypnoikWX31nChv8tnjbqOU5OrFqE83F35yij_u79-axnC8enprbealpVaeSdh3vsJhhqgkVLdRYMKqBzwijfIZzA9MpIVpCiLWMiZqwShnRWmO0rQWdoqsx18fUy6j7ZPRKe-eMTpIQQWkFcFDtgv_cm5jk2u-Dy49JQiHjYIIPKjKqdPAxBmPlLvRbFb4lYDkglSNSmZHKX6RyeICOppjFbmnCIfof1w8843bE</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Jamieson, B. J.</creator><creator>Barati, M.</creator><creator>Coley, K. S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><scope>OTOTI</scope></search><sort><creationdate>20191201</creationdate><title>Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag</title><author>Jamieson, B. J. ; Barati, M. ; Coley, K. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-3dd6d09803c239b170953c1682536805361eda99b222ff5597254ae9bfeecf793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CARBON</topic><topic>Carbon content</topic><topic>CARBON DIOXIDE</topic><topic>CARBON MONOXIDE</topic><topic>Carbothermic reactions</topic><topic>Characterization and Evaluation of Materials</topic><topic>CHEMISTRY</topic><topic>Chemistry and Materials Science</topic><topic>Continuous furnaces</topic><topic>DECOMPOSITION</topic><topic>DROPLETS</topic><topic>ICP MASS SPECTROSCOPY</topic><topic>Inductively coupled plasma</topic><topic>IRON</topic><topic>Iron and steel making</topic><topic>KINETICS</topic><topic>LIQUIDS</topic><topic>MANGANESE</topic><topic>MANGANESE OXIDES</topic><topic>MATERIALS SCIENCE</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Organic chemistry</topic><topic>OXYGEN</topic><topic>Reaction kinetics</topic><topic>REDUCTION</topic><topic>Slag</topic><topic>SLAGS</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jamieson, B. J.</creatorcontrib><creatorcontrib>Barati, M.</creatorcontrib><creatorcontrib>Coley, K. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>OSTI.GOV</collection><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jamieson, B. J.</au><au>Barati, M.</au><au>Coley, K. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag</atitle><jtitle>Metallurgical and materials transactions. B, Process metallurgy and materials processing science</jtitle><stitle>Metall Mater Trans B</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>50</volume><issue>6</issue><spage>2733</spage><epage>2746</epage><pages>2733-2746</pages><issn>1073-5615</issn><eissn>1543-1916</eissn><abstract>Experiments were performed using a range of test conditions to elucidate the rate controlling step during the reaction of liquid iron-carbon droplets and slags containing manganese oxide. Four conditions were tested in the system: initial MnO content in the slag (5, 10, and 15 wt pct), initial carbon content of the metal (1, 2.5, 4.3 wt pct), initial droplet mass (0.5, 1.0, and 1.5 g), and reaction temperature (1823 K [1550 °C], 1873 K [1600 °C], and 1923 K [1650 °C]). Data were collected using the Constant Volume Pressure Increase (CVPI) technique which tracked the continuous pressure increase in the sealed furnace over time. Samples were quenched at the end of each experiment and chemistry was checked using LECO Carbon Analysis and ICP (Inductively Coupled Plasma) for manganese. The rate of reaction can be broken into a faster initial period related to internal CO formation, and a slower second reaction controlled by a complex mechanism involving transport of oxygen from slag to metal via CO 2 and decomposition of the CO 2 at the gas–metal interface.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11663-019-01696-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5615
ispartof Metallurgical and materials transactions. B, Process metallurgy and materials processing science, 2019-12, Vol.50 (6), p.2733-2746
issn 1073-5615
1543-1916
language eng
recordid cdi_osti_scitechconnect_22933411
source SpringerLink Journals - AutoHoldings
subjects CARBON
Carbon content
CARBON DIOXIDE
CARBON MONOXIDE
Carbothermic reactions
Characterization and Evaluation of Materials
CHEMISTRY
Chemistry and Materials Science
Continuous furnaces
DECOMPOSITION
DROPLETS
ICP MASS SPECTROSCOPY
Inductively coupled plasma
IRON
Iron and steel making
KINETICS
LIQUIDS
MANGANESE
MANGANESE OXIDES
MATERIALS SCIENCE
Metallic Materials
Nanotechnology
Organic chemistry
OXYGEN
Reaction kinetics
REDUCTION
Slag
SLAGS
Structural Materials
Surfaces and Interfaces
Thin Films
title Kinetics of the Carbothermic Reduction of Manganese Oxide from Slag
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20the%20Carbothermic%20Reduction%20of%20Manganese%20Oxide%20from%20Slag&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20B,%20Process%20metallurgy%20and%20materials%20processing%20science&rft.au=Jamieson,%20B.%20J.&rft.date=2019-12-01&rft.volume=50&rft.issue=6&rft.spage=2733&rft.epage=2746&rft.pages=2733-2746&rft.issn=1073-5615&rft.eissn=1543-1916&rft_id=info:doi/10.1007/s11663-019-01696-9&rft_dat=%3Cproquest_osti_%3E2311915961%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2311915961&rft_id=info:pmid/&rfr_iscdi=true